波士顿房价预测python直方图

时间: 2023-11-08 17:04:36 浏览: 112
为了预测波士顿房价,可以使用Python的数据可视化库matplotlib来绘制直方图。直方图将房价分成不同的区间,并显示每个区间中有多少个房价值。以下是绘制波士顿房价预测的Python代码: ```python plt.hist(df['MEDV'], bins=20, edgecolor='k') plt.xlabel('房价') plt.ylabel('频数') plt.title('波士顿房价预测直方图') plt.show() ``` 这段代码将波士顿房价数据集中的房价列('MEDV')绘制成直方图,将房价分为20个间隔,并显示每个间隔中的频数。直方图可以帮助我们了解波士顿房价的分布情况。
相关问题

用python完成机器学习实验 波士顿房价预测需要的参考文献

以下是波士顿房价预测相关的参考文献: 1. 《Python机器学习基础教程》第二版,作者Sebastian Raschka和Vahid Mirjalili。该书介绍了使用Python进行机器学习的基本概念和技术,包括数据预处理、模型选择、评估和调优等。 2. “波士顿房价数据集”,该数据集包含了506个房屋的13个特征和价格的信息。可以在UCI机器学习库中获取。 3. “Scikit-learn”,是一个Python的机器学习库,包含了各种机器学习算法和工具,例如数据预处理、特征选择、模型选择、评估和调优等。可以使用该库来实现波士顿房价预测模型。 4. “Matplotlib”,是一个Python的数据可视化库,可以用于绘制各种图形,例如折线图、散点图、直方图等。可以使用该库来展示波士顿房价数据集和预测结果。 5. “Pandas”,是一个Python的数据分析库,可以用于数据读取、清洗、处理和转换等。可以使用该库来处理波士顿房价数据集。 希望以上参考文献能够帮助到你完成波士顿房价预测的机器学习实验。

1. 使用python读入数据sklearn中的波士顿房价的数据集。2. 对该数据集进行可视化(使用点图和核密度曲线直方图)3. 使用GBDT对模型进行预测,要求使用交叉验证训练,给出MSE误差曲线。

好的,我来为你提供Python的代码实现。 首先,我们需要导入相关的库和模块:numpy、pandas、matplotlib、sklearn等。然后,使用sklearn中的load_boston方法读入波士顿房价数据集。 ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston boston = load_boston() ``` 接下来,我们对数据集进行可视化。首先,使用散点图展示房价和房屋面积之间的关系。 ```python plt.scatter(boston.data[:, 5], boston.target) plt.xlabel('RM') plt.ylabel('Price') plt.show() ``` 然后,使用核密度曲线和直方图展示房屋面积和房间数目的分布情况。 ```python plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.hist(boston.data[:, 5], bins=20) plt.xlabel('RM') plt.ylabel('Frequency') plt.subplot(1, 2, 2) plt.hist(boston.data[:, 6], bins=20) plt.xlabel('LSTAT') plt.ylabel('Frequency') plt.show() ``` 最后,我们使用GBDT模型对数据集进行预测,并使用交叉验证训练,给出MSE误差曲线。首先,我们需要将数据集分为训练集和测试集。 ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.3, random_state=42) ``` 然后,我们可以使用sklearn中的GradientBoostingRegressor模型进行训练和预测。 ```python from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_val_score # 创建GBDT模型 gbdt = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=42) # 训练模型 gbdt.fit(X_train, y_train) # 预测模型 y_pred = gbdt.predict(X_test) # 计算MSE mse = mean_squared_error(y_test, y_pred) print("MSE: %.2f" % mse) # 使用交叉验证训练,并画出MSE误差曲线 scores = cross_val_score(gbdt, boston.data, boston.target, cv=10, scoring='neg_mean_squared_error') plt.plot(np.arange(1, 11), -scores) plt.xlabel('Number of folds') plt.ylabel('MSE') plt.show() ``` 以上就是Python的代码实现,希望对你有帮助。
阅读全文

相关推荐

最新推荐

recommend-type

python matplotlib库直方图绘制详解

Python的matplotlib库是数据可视化的重要工具,尤其在绘制直方图方面表现得尤为出色。直方图是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。在这里,我们将深入探讨如何使用matplotlib库...
recommend-type

Python预测2020高考分数和录取情况

【Python预测2020高考分数和录取情况】这篇文章展示了如何使用Python进行高考分数和录取情况的预测分析。首先,作者利用实际的山东新高考模拟考成绩数据,结合一分一段表和历年录取情况,对2020年高考可能的结果进行...
recommend-type

python3+opencv 使用灰度直方图来判断图片的亮暗操作

本篇文章将深入讲解如何利用灰度直方图来判断图片的亮度,并通过具体代码展示如何在Python中实现这一过程。 首先,我们要理解灰度直方图的概念。灰度直方图是表示图像中不同灰度等级出现频率的图形。在一张灰度图像...
recommend-type

python opencv 图像拼接的实现方法

Python OpenCV 图像拼接是一种将多张图片合并成一张全景图或连续场景的技术,它通过识别和匹配图像之间的相似特征来实现无缝拼接。在本文中,我们将深入探讨如何使用OpenCV库来实现这一过程。 首先,图像拼接分为...
recommend-type

Python给图像添加噪声具体操作

Python 提供了强大的库,如 `scikit-image`(简称 `skimage`),来帮助我们轻松实现这一功能。在本文中,我们将探讨如何使用 Python 和 `skimage` 库为图像添加噪声,以及具体的步骤。 首先,确保已经安装了 `...
recommend-type

Chrome ESLint扩展:实时运行ESLint于网页脚本

资源摘要信息:"chrome-eslint:Chrome扩展程序可在当前网页上运行ESLint" 知识点: 1. Chrome扩展程序介绍: Chrome扩展程序是一种为Google Chrome浏览器添加新功能的小型软件包,它们可以增强或修改浏览器的功能。Chrome扩展程序可以用来个性化和定制浏览器,从而提高工作效率和浏览体验。 2. ESLint功能及应用场景: ESLint是一个开源的JavaScript代码质量检查工具,它能够帮助开发者在开发过程中就发现代码中的语法错误、潜在问题以及不符合编码规范的部分。它通过读取代码文件来检测错误,并根据配置的规则进行分析,从而帮助开发者维护统一的代码风格和避免常见的编程错误。 3. 部署后的JavaScript代码问题: 在将JavaScript代码部署到生产环境后,可能存在一些代码是开发过程中未被检测到的,例如通过第三方服务引入的脚本。这些问题可能在开发环境中未被发现,只有在用户实际访问网站时才会暴露出来,例如第三方脚本的冲突、安全性问题等。 4. 为什么需要在已部署页面运行ESLint: 在已部署的页面上运行ESLint可以发现那些在开发过程中未被捕捉到的JavaScript代码问题。它可以帮助开发者识别与第三方脚本相关的问题,比如全局变量冲突、脚本执行错误等。这对于解决生产环境中的问题非常有帮助。 5. Chrome ESLint扩展程序工作原理: Chrome ESLint扩展程序能够在当前网页的所有脚本上运行ESLint检查。通过这种方式,开发者可以在实际的生产环境中快速识别出可能存在的问题,而无需等待用户报告或使用其他诊断工具。 6. 扩展程序安装与使用: 尽管Chrome ESLint扩展程序尚未发布到Chrome网上应用店,但有经验的用户可以通过加载未打包的扩展程序的方式自行安装。这需要用户从GitHub等平台下载扩展程序的源代码,然后在Chrome浏览器中手动加载。 7. 扩展程序的局限性: 由于扩展程序运行在用户的浏览器端,因此它的功能可能受限于浏览器的执行环境。它可能无法访问某些浏览器API或运行某些特定类型的代码检查。 8. 调试生产问题: 通过使用Chrome ESLint扩展程序,开发者可以有效地调试生产环境中的问题。尤其是在处理复杂的全局变量冲突或脚本执行问题时,可以快速定位问题脚本并分析其可能的错误源头。 9. JavaScript代码优化: 扩展程序不仅有助于发现错误,还可以帮助开发者理解页面上所有JavaScript代码之间的关系。这有助于开发者优化代码结构,提升页面性能,确保代码质量。 10. 社区贡献: Chrome ESLint扩展程序的开发和维护可能是一个开源项目,这意味着整个开发社区可以为其贡献代码、修复bug和添加新功能。这对于保持扩展程序的活跃和相关性是至关重要的。 通过以上知识点,我们可以深入理解Chrome ESLint扩展程序的作用和重要性,以及它如何帮助开发者在生产环境中进行JavaScript代码的质量保证和问题调试。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

精确率与召回率的黄金法则:如何在算法设计中找到最佳平衡点

![精确率与召回率的黄金法则:如何在算法设计中找到最佳平衡点](http://8411330.s21i.faiusr.com/4/ABUIABAEGAAg75zR9gUo_MnlwgUwhAc4-wI.png) # 1. 精确率与召回率的基本概念 在信息技术领域,特别是在机器学习和数据分析的语境下,精确率(Precision)和召回率(Recall)是两个核心的评估指标。精确率衡量的是模型预测为正的样本中实际为正的比例,而召回率衡量的是实际为正的样本被模型正确预测为正的比例。理解这两个概念对于构建有效且准确的预测模型至关重要。为了深入理解精确率与召回率,在本章节中,我们将先从这两个概念的定义
recommend-type

在嵌入式系统中,如何确保EFS高效地管理Flash和ROM存储器,并向应用程序提供稳定可靠的接口?

为了确保嵌入式文件系统(EFS)高效地管理Flash和ROM存储器,同时向应用程序提供稳定可靠的接口,以下是一些关键技术和实践方法。 参考资源链接:[嵌入式文件系统:EFS在Flash和ROM中的可靠存储应用](https://wenku.csdn.net/doc/87noux71g0?spm=1055.2569.3001.10343) 首先,EFS需要设计为一个分层结构,其中包含应用程序接口(API)、本地设备接口(LDI)和非易失性存储器(NVM)层。NVM层负责处理与底层存储介质相关的所有操作,包括读、写、擦除等,以确保数据在断电后仍然能够被保留。 其次,EFS应该提供同步和异步两
recommend-type

基于 Webhook 的 redux 预处理器实现教程

资源摘要信息: "nathos-wh:*** 的基于 Webhook 的 redux" 知识点: 1. Webhook 基础概念 Webhook 是一种允许应用程序提供实时信息给其他应用程序的方式。它是一种基于HTTP回调的简单技术,允许一个应用在特定事件发生时,通过HTTP POST请求实时通知另一个应用,从而实现两个应用之间的解耦和自动化的数据交换。在本主题中,Webhook 用于触发服务器端的预处理操作。 2. Grunt 工具介绍 Grunt 是一个基于Node.js的自动化工具,主要用于自动化重复性的任务,如编译、测试、压缩文件等。通过定义Grunt任务和配置文件,开发者可以自动化执行各种操作,提高开发效率和维护便捷性。 3. Node 模块及其安装 Node.js 是一个基于Chrome V8引擎的JavaScript运行环境,它允许开发者使用JavaScript来编写服务器端代码。Node 模块是Node.js的扩展包,可以通过npm(Node.js的包管理器)进行安装。在本主题中,通过npm安装了用于预处理Sass、Less和Coffescript文件的Node模块。 4. Sass、Less 和 Coffescript 文件预处理 Sass、Less 和 Coffescript 是前端开发中常用的预处理器语言。Sass和Less是CSS预处理器,它们扩展了CSS的功能,例如变量、嵌套规则、混合等,使得CSS编写更加方便、高效。Coffescript则是一种JavaScript预处理语言,它提供了更为简洁的语法和一些编程上的便利特性。 5. 服务器端预处理操作触发 在本主题中,Webhook 被用来触发服务器端的预处理操作。当Webhook被设置的事件触发后,它会向服务器发送一个HTTP POST请求。服务器端的监听程序接收到请求后,会执行相应的Grunt任务,进行Sass、Less和Coffescript的编译转换工作。 6. Grunt 文件配置 Grunt 文件(通常命名为Gruntfile.js)是Grunt任务的配置文件。它定义了任务和任务运行时的配置,允许开发者自定义要执行的任务以及执行这些任务时的参数。在本主题中,Grunt文件被用来配置预处理任务。 7. 服务器重启与 Watch 命令 为了确保Webhook触发的预处理命令能够正确执行,需要在安装完所需的Node模块后重新启动Webhook运行服务器。Watch命令是Grunt的一个任务,可以监控文件的变化,并在检测到变化时执行预设的任务,如重新编译Sass、Less和Coffescript文件。 总结来说,nathos-wh主题通过搭建Grunt环境并安装特定的Node模块,实现了Sass、Less和Coffescript文件的实时预处理。这使得Web开发人员可以在本地开发时享受到更高效、自动化的工作流程,并通过Webhook与服务器端的交互实现实时的自动构建功能。这对于提高前端开发的效率和准确性非常关键,同时也体现了现代Web开发中自动化工具与实时服务整合的趋势。