利用梯形法计算e^(-x^2)在负无穷到正无穷区间对x的积分,请写出matlab程序。
时间: 2024-11-15 15:28:25 浏览: 44
在MATLAB中,计算指数函数e^(-x^2)从负无穷到正无穷的积分,理论上是不可能完成的,因为这是一个无限区间并且函数在x趋于无穷时会趋近于0,但在实数范围内没有边界。不过,我们可以在一定范围内(如-50到50)使用数值积分方法,比如梯形法则(Trapezoidal Rule)。下面是一个简单的示例程序:
```matlab
% 定义函数 e^(-x^2)
fun = @(x) exp(-x.^2);
% 设置积分范围(这里设定为-50到50)
a = -50;
b = 50;
% 梯形法则积分
n = 10000; % 网格点的数量
dx = (b - a) / n; % 计算每个小区间的宽度
y = fun(linspace(a, b, n+1)); % 提取网格点的函数值
integral_approx = dx * (y(1) + 2*sum(y(2:end-1)) + y(end))/2;
fprintf('The approximate integral of e^(-x^2) from -50 to 50 is: %.8f\n', integral_approx);
```
这个程序将使用10000个等间距的小区间,然后应用梯形法则来近似积分值。结果应当接近于0,但要注意随着网格点数量的增加,积分的结果会更精确,但也可能需要更多的时间。
阅读全文
相关推荐















