if self.cuda: self.net = torch.nn.DataParallel(self.net) cudnn.benchmark = True self.net = self.net.cuda()
时间: 2024-02-14 11:30:27 浏览: 208
这段代码主要用于在使用GPU加速时,将模型移到GPU上进行训练或推理。首先,判断`self.cuda`是否为True,即是否要使用GPU加速。如果是,则将模型包装在`torch.nn.DataParallel`中,以便在多个GPU上并行地进行操作。然后,通过`cudnn.benchmark = True`来启用CUDNN的自动调整功能,从而提高训练速度。最后,调用`self.net.cuda()`将模型移动到GPU上。这样一来,模型的所有参数和计算都将在GPU上进行,以加快训练或推理的速度。
相关问题
deepfashion的Category and Attribute Prediction Benchmark数据集如何使用,请帮我编写一段基于torch的示例
好的,以下是一个基于PyTorch的DeepFashion分类和属性预测的示例代码:
```python
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, models
from PIL import Image
# 读取标注文件
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
# 定义数据预处理的transforms
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 自定义Dataset类
class FashionDataset(Dataset):
def __init__(self, df, transform=None):
self.df = df
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
img_path = self.df.loc[idx, 'image_path']
img = Image.open(img_path).convert('RGB')
if self.transform:
img = self.transform(img)
category = torch.tensor(self.df.loc[idx, 'category'])
attributes = torch.tensor(self.df.loc[idx, 'attributes'].split(';'))
return img, category, attributes
# 定义模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 50) # 50为类别数
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 定义训练函数
def train(model, dataloader, criterion, optimizer):
model.train()
running_loss = 0.0
for inputs, category, attributes in dataloader:
inputs = inputs.to(device)
category = category.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, category)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss
# 定义测试函数
def test(model, dataloader, criterion):
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, category, attributes in dataloader:
inputs = inputs.to(device)
category = category.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, category)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == category.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc
# 定义训练集和测试集
train_dataset = FashionDataset(train_df, data_transforms)
test_dataset = FashionDataset(test_df, data_transforms)
# 定义DataLoader
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)
# 训练模型
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
best_acc = 0.0
for epoch in range(10):
epoch_loss = train(model, train_dataloader, criterion, optimizer)
_, epoch_acc = test(model, test_dataloader, criterion)
print('Epoch {} loss: {:.4f} accuracy: {:.4f}'.format(epoch+1, epoch_loss, epoch_acc))
if epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), 'best_model.pth')
```
在这个示例中,我们使用ResNet18预训练模型来进行分类,训练了10个epochs,每个epoch中进行了训练和测试,并记录了loss和accuracy。需要注意的是,这里仅仅是一个示例,实际使用中需要根据任务的具体需求进行模型和数据处理的调整。
阅读全文