plt.barh(features, feature_importances, color=‘green’)如何设定字体类型
时间: 2024-09-12 09:09:10 浏览: 38
`plt.barh()` 函数用于绘制水平条形图,其中 `features` 是横坐标,`feature_importances` 是纵坐标上的数值。如果你想设置字体类型,可以在调用 `barh()` 后添加一个 `title` 参数来指定图表标题的字体,使用 `fontdict` 参数来定义字体属性。例如,你可以这样设置:
```python
import matplotlib.pyplot as plt
features = ... # your features
feature_importances = ... # your feature importances
plt.barh(features, feature_importances, color='green')
title_font = {'family': 'Arial', 'size': 14, 'weight': 'bold'} # 设置字体样式
plt.title('Feature Importance', fontdict=title_font)
plt.show()
```
这里我们设置了标题的字体家族(如 Arial)、大小和粗细。如果你想要改变其他文本的字体,比如轴标签或图例,可以类似地修改 `xticks`、`yticks` 或 `legend` 的 `labelpad` 参数。
相关问题
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()
这段代码是一个机器学习模型的完整流程,包括数据准备、特征工程、模型建立、模型训练、预测结果保存、模型评估和可视化分析等步骤。其中包括了绘制柱形图和对比类分析的代码。
绘制柱形图的代码如下:
```
feature_importances = pd.Series(model.feature_importances_, index=X_train.columns)
feature_importances = feature_importances.sort_values(ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(x=feature_importances, y=feature_importances.index)
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title('Visualizing Important Features')
plt.show()
```
这段代码会生成一个柱形图,横轴为特征重要性得分,纵轴为特征名称,用于展示机器学习模型中各个特征的重要性。
对比类分析的代码如下:
```
train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red'])
plt.title('Class Distribution')
plt.xlabel('Class')
plt.ylabel('Frequency')
plt.show()
```
这段代码会生成一个柱形图,展示训练数据中不同类别的样本数量分布情况。这个图可以用于判断数据集是否存在类别不平衡的情况,以及对模型的训练和评估结果进行解释。
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X) X_s= scaler.transform(X) X_s[:3] from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=5000, max_features=int(X.shape[1] / 3), random_state=0) model.fit(X_s,y) model.score(X_s,y) pred = model.predict(X_s) plt.scatter(pred, y, alpha=0.6) w = np.linspace(min(pred), max(pred), 100) plt.plot(w, w) plt.xlabel('pred') plt.ylabel('y_test') plt.title('Comparison of GDP fitted value and true value') print(model.feature_importances_) sorted_index = model.feature_importances_.argsort() plt.barh(range(X.shape[1]), model.feature_importances_[sorted_index]) plt.yticks(np.arange(X.shape[1]),X.columns[sorted_index],fontsize=14) plt.xlabel('X Importance',fontsize=12) plt.ylabel('covariate X',fontsize=12) plt.title('Importance Ranking Plot of Covariate ',fontsize=15) plt.tight_layout()
这段代码是一个机器学习模型的训练和评估过程,其中使用了StandardScaler对特征进行标准化处理,然后使用RandomForestRegressor模型进行训练,并计算了模型在训练数据上的得分(score)。接着对预测值和真实值进行了散点图的可视化,并绘制了重要性排名图。
需要注意的是,代码中的X和y表示输入的特征和目标变量,需要根据具体的数据进行替换。另外,代码中使用了一些库,需要确保这些库已经安装并导入。如果需要运行这段代码,请确保相关的依赖已经安装,并替换X和y为实际的数据。
阅读全文