语义分割轻量化神经网络
时间: 2023-11-02 17:05:57 浏览: 117
语义分割神经网络ENet
引用提到了语义分割的经典网络模型和轻量化模型。其中,引用介绍了全卷积神经网络(FCN)作为一种经典的语义分割模型,它通过将传统的分类网络的全连接层转化为卷积层,并采用反卷积和跳跃连接的方式来恢复图像的细节信息和融合特征。而引用提到了CGnet,它是一种轻量化的语义分割网络,通过在所有阶段使用CG模块来获取上下文信息。
除了FCN和CGnet之外,还存在其他一些轻量化的语义分割神经网络,例如:
1. ENet:ENet是一种轻量化的语义分割网络,它通过设计轻量级的模块和减少参数量来实现高效的语义分割。
2. ICNet:ICNet是一种多尺度级联网络,它通过将图像分为不同的尺度进行处理,从而实现高效的语义分割。
3. DFANet:DFANet是一种基于注意力机制的轻量化语义分割网络,它通过引入分组卷积和注意力模块来提高模型的效率和准确性。
阅读全文