stewart平台的计算

时间: 2023-08-12 18:02:27 浏览: 256
Stewart平台是一种由六个线性执行器组成的并联机构,它具有高刚度和精确的运动控制能力。这种平台主要用于模拟运动、姿态控制和精密定位等领域。它的计算主要包括逆运动学和正运动学的计算。 逆运动学是指已知平台的位置和姿态,求解各个执行器的长度和角度。逆运动学计算可以通过几何方法或者解析方法来进行,其中较为常用的是解析方法。解析方法通过利用平台的尺寸和几何关系,以及通过求解代数方程组来得到执行器的长度和角度。逆运动学的计算对于平台的精确定位和控制非常重要。 正运动学是指已知各个执行器的长度和角度,求解平台的位置和姿态。正运动学计算可以使用三角法或者几何法来进行。三角法通过利用平台的尺寸和执行器的长度来计算平台的位置和姿态。几何法则通过利用平台的几何关系和角度来计算平台的位置和姿态。正运动学的计算对于控制平台的运动和姿态也是非常重要的。 除了逆运动学和正运动学的计算,Stewart平台的计算还包括动力学的计算。动力学计算主要包括求解平台的运动学反解、负载分配、刚度分析等。这些计算可以帮助工程师更好地了解平台的性能和运动状态,进而优化平台的设计和运动控制。 总之,Stewart平台的计算涵盖了逆运动学、正运动学和动力学等方面,通过这些计算可以帮助工程师实现平台的精确定位和运动控制,从而应用于模拟运动、姿态控制和精密定位等领域。
相关问题

stewart平台自由度计算

### 回答1: Stewart平台是一种并联机构,具有六个自由度,其中三个为平移自由度,三个为旋转自由度。平移自由度包括x、y、z三个方向上的平移,旋转自由度包括绕x、y、z轴的旋转。 在Stewart平台中,底座与顶部都是由六个支撑杆连接而成,每个支撑杆都有两个球节,一个连接底座,一个连接顶部。通过底座和顶部之间的运动,可以实现各种六自由度的运动。通过拉伸或压缩各个支撑杆的长度,可以实现平移自由度的运动;通过旋转各个支撑杆,可以实现旋转自由度的运动。 Stewart平台自由度计算的方法有多种,其中一种常用的方法是基于雅各比矩阵的计算方法。雅各比矩阵是底座和顶部之间的运动学关系的矩阵表示,通过计算雅各比矩阵的秩,可以确定Stewart平台的自由度。通过可逆的雅各比矩阵变换,可以将底座坐标系中的坐标值转换为顶部坐标系中的坐标值,从而实现对Stewart平台姿态的控制。 总之,Stewart平台具有六自由度,其中三个为平移自由度,三个为旋转自由度。通过雅各比矩阵的计算方法可以确定Stewart平台的自由度,并实现对平移和旋转自由度的精确控制。 ### 回答2: Stewart平台是一种由六个液压缸组成的平行机构,可以在任意方向上执行运动,因此具有六自由度。Stewart平台还可以支持与其连接的负载的旋转和倾斜,因此被广泛应用在航空航天、汽车工业等领域。 对于Stewart平台,其自由度可以通过以下的计算得到。首先对于每个液压缸,设其作用于平台上的作用点位置为$P_i$,作用点在液压缸杆上的投影点为$Q_i$,液压缸的伸缩长度为$l_i$,液压缸自身的长度为$l'_i$,则有: $$ l_i + l'_i = \left\|P_i - Q_i\right\| $$ 这个式子表达了液压缸长度和伸缩长度的关系。现在考虑平台的位姿,设平台中心的位置为$O$,平台与地面平行且平面内与$x$轴的夹角为$\alpha$,如下图所示。 ![image.png](https://cdn.luogu.com.cn/upload/image_hosting/vye6n7ab.png) 为了方便计算,我们定义以下向量: $$ \vec{p_i} = OP_i $$ $$ \vec{q_i} = OQ_i $$ 则有: $$ \vec{p_i} = \vec{q_i} + \lambda_i \vec{n_i} $$ 其中$\vec{n_i}$表示液压缸的固定方向(由液压缸的安装位置决定),$\lambda_i$为液压缸的伸缩长度,可以通过$l_i$和$l'_i$计算得到。 现在我们需要求解平台的位姿,即要求出$O$的位置和平面的旋转角$\alpha$。对于一个特定的要求,可以设平面内的三个控制点为$A_1, A_2, A_3$,它们在平面内的位置已知,并且对于每个液压缸,我们可以计算出其作用在平台控制点上的力$F_i$。因此,可以列出以下方程组: $$ \vec{p_1} - \vec{q_1} = \lambda_1 \vec{n_1} $$ $$ \vec{p_2} - \vec{q_2} = \lambda_2 \vec{n_2} $$ $$ \vec{p_3} - \vec{q_3} = \lambda_3 \vec{n_3} $$ $$ \vec{p_4} - \vec{q_4} = \lambda_4 \vec{n_4} $$ $$ \vec{p_5} - \vec{q_5} = \lambda_5 \vec{n_5} $$ $$ \vec{p_6} - \vec{q_6} = \lambda_6 \vec{n_6} $$ 这些方程的含义是,每个控制点与平台固定点之间的距离等于液压缸的伸缩长度。因此,方程的未知量是液压缸的伸缩长度$\lambda_i$和平台的位姿。对于任意一个控制点$A_i$,都有: $$ F_{A_i} = \sum_{j=1}^6 F_{i,j} $$ 其中$F_{i,j}$表示第$j$个液压缸对控制点$A_i$的作用力,在计算这个力之前需要对液压缸的长度进行重新调节,使得液压缸的伸缩长度满足上述的方程组。这样就得到了平台的位姿,进而可以得到平台的自由度。 ### 回答3: Stewart平台,也被称为平行机构,是一种多自由度的机器人系统。它由一个固定的平台和一组连接着平台和底座的活动杆臂组成。Stewart平台常用于航空航天、汽车制造和医疗器械等领域,具有高精度、高刚度和高灵活度等优点。其中,自由度是指机器人系统能够运动的独立方向。在Stewart平台中,自由度的计算是非常重要的。 在Stewart平台中,自由度的计算可以通过运用雅可比矩阵来实现。雅可比矩阵是一种将输入与输出之间的关系表示为线性变换的矩阵。在机器人系统中,雅可比矩阵被用来计算机器人末端执行器的速度和位置,并确定机器人的自由度。因此,在计算Stewart平台的自由度时,需要遵循以下步骤: 1. 在每个杆臂的固定顶点上,定义一个坐标系并确定3D空间中的点。 2. 确定每个活动的杆臂的长度和连接这些杆臂的球节坐标系(Sij)。 3. 计算每个球节坐标系的位置和速度雅可比矩阵。 4. 构造平台的全局雅可比矩阵,然后使用行列式计算其秩。 5. 实现一个根据平台上的特定点输入,更新该点在平台上的位置的程序,并对该程序进行自由度测试,以确保机器人系统有足够的自由度。 总之,Stewart平台的自由度计算是一个复杂且耗时的过程,需要计算机科学和机器人工程领域的专业知识。通过对自由度的正确计算,Stewart平台可以更加高效地实现它被设计的功能,并成为现代工业领域的重要组成部分。

如何利用MATLAB软件完成Stewart平台的运动空间计算和运动学正解的算法实现?请结合《Stewart平台运动学与动力学算法MATLAB实现》资源提供指导。

针对Stewart平台的运动空间计算和运动学正解的实现,MATLAB提供了一个强大的平台。通过使用《Stewart平台运动学与动力学算法MATLAB实现》中的算法和代码,可以高效地进行这两项重要的计算任务。 参考资源链接:[Stewart平台运动学与动力学算法MATLAB实现](https://wenku.csdn.net/doc/4tgn2hf4gg?spm=1055.2569.3001.10343) 首先,运动空间的计算是确定Stewart平台能够达到的所有可能位置的过程。这通常需要利用平台的几何参数和各个连杆的长度限制来建立数学模型,并通过数值解法求解。在MATLAB中,可以通过编写函数来表示各个连杆的几何约束,然后利用符号计算或者数值优化方法,如线性规划或非线性规划,来找到满足约束的所有可能解。 其次,对于运动学正解,我们需要在已知六个驱动杆的长度的情况下,计算出上平台的位置和姿态。这通常涉及到复杂的反向运动学问题,需要通过矩阵运算和数值方法求解。MATLAB中可以使用Robotics Toolbox来简化机器人模型的建立和运动学方程的求解。具体来说,可以定义Stewart平台的DH参数,然后使用反向运动学求解器来获得平台的位姿。 在进行上述计算时,可以使用《Stewart平台运动学与动力学算法MATLAB实现》中提供的代码框架和模块作为起点。资源中的代码已经过测试,可以帮助快速搭建计算模型,减少调试时间。此外,利用MATLAB的可视化功能,可以直观地展示Stewart平台的运动空间和位姿变化,有助于理解算法的计算结果。 为了更好地掌握MATLAB在Stewart平台运动学分析中的应用,建议先深入理解Stewart平台的运动学和动力学原理,然后通过学习《Stewart平台运动学与动力学算法MATLAB实现》中的实例和代码,逐步掌握算法的实现过程。 参考资源链接:[Stewart平台运动学与动力学算法MATLAB实现](https://wenku.csdn.net/doc/4tgn2hf4gg?spm=1055.2569.3001.10343)
阅读全文

相关推荐

最新推荐

recommend-type

ListView上下翻页效果.zip

ListView上下翻页效果
recommend-type

Android项目之——漂亮的平台书架.zip

Android项目之——漂亮的平台书架
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【MATLAB时间序列分析】:预测与识别的高效技巧

![MATLAB](https://img-blog.csdnimg.cn/direct/8652af2d537643edbb7c0dd964458672.png) # 1. 时间序列分析基础概念 在数据分析和预测领域,时间序列分析是一个关键的工具,尤其在经济学、金融学、信号处理、环境科学等多个领域都有广泛的应用。时间序列分析是指一系列按照时间顺序排列的数据点的统计分析方法,用于从过去的数据中发现潜在的趋势、季节性变化、周期性等信息,并用这些信息来预测未来的数据走向。 时间序列通常被分为四种主要的成分:趋势(长期方向)、季节性(周期性)、循环(非固定周期)、和不规则性(随机波动)。这些成分
recommend-type

如何在TMS320VC5402 DSP上配置定时器并设置中断服务程序?请详细说明配置步骤。

要掌握在TMS320VC5402 DSP上配置定时器和中断服务程序的技能,关键在于理解该处理器的硬件结构和编程环境。这份资料《TMS320VC5402 DSP习题答案详解:关键知识点回顾》将为你提供详细的操作步骤和深入的理论知识,帮助你彻底理解和应用这些概念。 参考资源链接:[TMS320VC5402 DSP习题答案详解:关键知识点回顾](https://wenku.csdn.net/doc/1zcozv7x7v?spm=1055.2569.3001.10343) 首先,你需要熟悉TMS320VC5402 DSP的硬件结构,尤其是定时器和中断系统的工作原理。定时器是DSP中用于时间测量、计