opencv全景图像拼接

时间: 2023-07-29 08:10:00 浏览: 39
回答: OpenCV是一个开源的计算机视觉库,它提供了一些用于图像处理和计算机视觉任务的函数和工具。在OpenCV中,可以使用图像拼接技术来创建全景图像。全景图像拼接是指将具有重叠区域的多张图像缝合在一起,以创建一张完整的全景图。在实现全景图像拼接时,可以使用一些计算机视觉和图像处理技术,如关键点特征检测、局部不变特征、关键特征点匹配、RANSAC(Random Sample Consensus,随机采样一致性)和透视变形等。具体的步骤可以参考OpenCV官方文档中的示例代码,如stitching.cpp和stitching_detailed.cpp。\[1\]\[2\] #### 引用[.reference_title] - *1* [opencv图片全景拼接详解](https://blog.csdn.net/Real_Myth/article/details/50961149)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [基于Python和OpenCV实现图像的全景拼接](https://blog.csdn.net/weixin_51571728/article/details/120584432)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

### 回答1: OpenCV 是一个开源的计算机视觉库,可以在 Python 中进行全景图像拼接。具体做法是使用 OpenCV 中的 cv2.createStitcher() 函数来创建一个拼接器对象,然后使用该对象的 stitch() 方法来执行拼接操作。示例代码如下: import cv2 # Load images img1 = cv2.imread("image1.jpg") img2 = cv2.imread("image2.jpg") # Create a stitcher object stitcher = cv2.createStitcher() # Perform image stitching result = stitcher.stitch([img1, img2]) # Save the result cv2.imwrite("result.jpg", result[1]) 上面的代码展示了如何使用 OpenCV 在 Python 中拼接两张图像。首先加载图像,然后创建拼接器对象,最后使用 stitch() 方法拼接图像并保存结果。您可以将图像数量和顺序作为参数传递给 stitch() 方法,以拼接多于两张图像。 ### 回答2: OpenCV全景图像拼接是一项基于Python编程语言的图像处理技术,它涉及到多张图像的拼接,以形成一张更大的全景图像。该技术在视频监控、无人机航拍、地图导航等领域具有广泛的应用。 在实现OpenCV全景图像拼接时,需要先对多张图像进行预处理,包括图像的预匹配、特征提取和图像配准。预匹配是指在多张图像中寻找相似的区域,从而提取出图像中共有的特征点。特征提取是指通过对这些共有特征点进行分析,找到图像间真正相似的部分。图像配准是指通过计算图像间的变换矩阵,实现图像间的无缝对齐。 完成预处理后,就可以进行图像拼接。在图像拼接的过程中,需要将每张图像投影到全景图像的坐标空间中,并进行像素补偿和平滑处理。最终,可以得到一张完整的全景图像。 在Python中实现OpenCV全景图像拼接,需要借助开源的OpenCV库。该库提供了多种图像处理的接口和函数,可以方便地实现图像的预处理、配准和拼接。此外,Python语言本身也具有简洁、易懂的优点,可以大大降低程序员的编程难度。 总之,OpenCV全景图像拼接技术以其广泛的应用领域和良好的实现效果,成为图像处理领域中非常重要的技术之一。在Python编程语言的支持下,这项技术可以更加便捷地被应用到各种领域之中。 ### 回答3: OpenCV全景图像拼接Python是一种将多幅图片融合成一幅全景图片的技术。具体来讲,这种技术主要是基于一系列的图像拼接算法,可以自动将多幅图片中重叠的部分进行无缝衔接,最终形成一张完整的全景图片。下面就来详细讲解一下OpenCV全景图像拼接Python的实现方法。 首先,需要安装OpenCV库和Numpy库。安装好之后,就可以开始实现全景图像拼接了。具体步骤如下: 1.加载要拼接的图片,使用OpenCV库中的cv2.imread()函数将图片读入到内存中。 2.使用SIFT算法在每张图片中提取特征点。这些特征点包括但不限于角点、边缘点、黑白斑点等,是用于表示图片中各处的独特性质的点。 3.使用FLANN算法(快速最近邻搜索库)或暴力匹配算法将相邻两张图片中的特征点进行匹配。这将创建一个连接已匹配点的线。 4.使用RANSAC算法剔除那些匹配点不够可信的线。这样可以得到一些直线,这些直线是在匹配到的图像上沿着相似方向的线。 5.在图像间应用变换矩阵,使它们“拟合”到一起,使得由匹配点互相对应的直线变得重合。这样,被融合到一起的图像都将拥有同一个方向。 6.将两个图像透视变换,并使用cv2.warpPerspective()函数将它们合并在一起。 通过上述步骤,在Python编程中可以非常方便的实现OpenCV全景图像拼接功能。需要注意的是,在实现过程中要注意手动调整每张图片的方向和拼接顺序,才可以得到更好的全景拼接效果。
以下是使用OpenCV实现全景图像拼接的C++源代码: cpp #include <opencv2/opencv.hpp> #include <iostream> #include <vector> using namespace cv; using namespace std; int main(int argc, char** argv) { // 读取图像 vector<Mat> imgs; for (int i = 1; i <= 5; i++) { Mat img = imread(format("image%d.jpg", i)); if (img.empty()) { cout << "Can't read image " << i << endl; return -1; } imgs.push_back(img); } // 特征提取与匹配 Ptr<Feature2D> detector = ORB::create(); vector<vector<KeyPoint>> keypoints(imgs.size()); vector<Mat> descriptors(imgs.size()); for (int i = 0; i < imgs.size(); i++) { detector->detectAndCompute(imgs[i], noArray(), keypoints[i], descriptors[i]); } Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); vector<vector<DMatch>> matches(imgs.size() - 1); for (int i = 0; i < matches.size(); i++) { matcher->match(descriptors[i], descriptors[i + 1], matches[i]); } // 计算单应性矩阵 vector pts1, pts2; for (int i = 0; i < matches.size(); i++) { for (int j = 0; j < matches[i].size(); j++) { int queryIdx = matches[i][j].queryIdx; int trainIdx = matches[i][j].trainIdx; pts1.push_back(keypoints[i][queryIdx].pt); pts2.push_back(keypoints[i + 1][trainIdx].pt); } } Mat H = findHomography(pts2, pts1, RANSAC); // 计算输出图像大小 vector corners(imgs.size()); corners[0] = Point2f(0, 0); vector border(4); border[0] = Point2f(0, 0); border[1] = Point2f(imgs[0].cols, 0); border[2] = Point2f(imgs[0].cols, imgs[0].rows); border[3] = Point2f(0, imgs[0].rows); perspectiveTransform(border, corners[0].reshape(2), H); float xMin = corners[0].x, xMax = corners[0].x; float yMin = corners[0].y, yMax = corners[0].y; for (int i = 1; i < imgs.size(); i++) { corners[i] = Point2f(0, 0); perspectiveTransform(border, corners[i].reshape(2), H); xMin = min(xMin, corners[i].x); xMax = max(xMax, corners[i].x); yMin = min(yMin, corners[i].y); yMax = max(yMax, corners[i].y); } int width = cvRound(xMax - xMin); int height = cvRound(yMax - yMin); Mat panorama(height, width, CV_8UC3, Scalar(0, 0, 0)); // 拼接图像 warpPerspective(imgs[0], panorama(Rect(cvRound(corners[0].x - xMin), cvRound(corners[0].y - yMin), imgs[0].cols, imgs[0].rows)), H, panorama.size()); for (int i = 1; i < imgs.size(); i++) { Mat H1 = H.clone(); H1.at<double>(0, 2) -= xMin; H1.at<double>(1, 2) -= yMin; warpPerspective(imgs[i], panorama(Rect(0, 0, imgs[i].cols, imgs[i].rows)), H1, panorama.size()); } // 显示结果 imshow("Panorama", panorama); waitKey(0); return 0; } 注:该代码使用ORB特征提取和汉明距离匹配算法,可根据实际情况进行调整。
要实现opencv全景视频拼接,可以使用以下步骤: 1. 读取视频帧并提取特征点 2. 匹配特征点并计算变换矩阵 3. 将变换矩阵应用于图像并进行拼接 4. 重复步骤2和3直到所有帧都被拼接 以下是一个简单的示例代码: python import cv2 import numpy as np # 读取视频 cap = cv2.VideoCapture('video.mp4') # 创建ORB特征检测器 orb = cv2.ORB_create() # 读取第一帧并提取特征点 ret, prev_frame = cap.read() prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY) prev_keypoints, prev_descriptors = orb.detectAndCompute(prev_gray, None) # 创建FLANN匹配器 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) # 创建拼接器 stitcher = cv2.createStitcher() if cv2.__version__.startswith('3') else cv2.Stitcher_create() # 循环读取视频帧并拼接 while True: # 读取下一帧 ret, next_frame = cap.read() if not ret: break next_gray = cv2.cvtColor(next_frame, cv2.COLOR_BGR2GRAY) # 提取特征点并匹配 next_keypoints, next_descriptors = orb.detectAndCompute(next_gray, None) matches = matcher.match(prev_descriptors, next_descriptors) # 计算变换矩阵 src_pts = np.float32([prev_keypoints[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([next_keypoints[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 应用变换矩阵并拼接图像 result = cv2.warpPerspective(next_frame, M, (prev_frame.shape[1] + next_frame.shape[1], prev_frame.shape[0])) result[0:prev_frame.shape[0], 0:prev_frame.shape[1]] = prev_frame # 更新上一帧和特征点 prev_frame = result prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY) prev_keypoints, prev_descriptors = orb.detectAndCompute(prev_gray, None) # 显示结果 cv2.imshow('Result', result) cv2.waitKey() # 释放资源 cap.release() cv2.destroyAllWindows()
OpenCV提供了两种方法进行图像全景拼接。一种是使用OpenCV内置的Stitcher API进行拼接,另一种是使用特征检测算法匹配两幅图像中相似的点,计算变换矩阵,最后进行透视变换。\[1\] 对于使用OpenCV内置的Stitcher进行拼接,可以使用以下代码实现: cpp bool OpenCV_Stitching(Mat image_left, Mat image_right) { vector<Mat> images; images.push_back(image_left); images.push_back(image_right); Ptr<Stitcher> stitcher = Stitcher::create(); Mat result; Stitcher::Status status = stitcher->stitch(images, result); if (status != Stitcher::OK) return false; imshow("OpenCV图像全景拼接", result); return true; } 这段代码将两幅图像放入一个容器中,然后创建一个Stitcher模型。使用stitch函数进行拼接,最后将结果显示出来。\[2\] 另一种方法是使用特征检测算法进行拼接。这个方法包括以下步骤:特征检测、计算单应性矩阵、透视变换和图像拼接。具体的代码实现和效果可以参考相关资料\[3\]。 总之,OpenCV提供了多种方法进行图像全景拼接,可以根据具体需求选择合适的方法进行使用。 #### 引用[.reference_title] - *1* *2* *3* [OpenCV C++案例实战十二《图像全景拼接》](https://blog.csdn.net/Zero___Chen/article/details/122274445)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
全景图像拼接是将多张拍摄自同一地点、视角不同的照片拼接成一张大的全景图像。OpenCV是一个非常强大的计算机视觉库,可以用来实现全景图像拼接。 下面是实现全景图像拼接的基本步骤: 1. 加载图片。使用OpenCV的cv2.imread()函数加载图片。 2. 特征点检测。使用OpenCV的SIFT、SURF、ORB等算法检测每张图片的特征点。 3. 特征点匹配。使用OpenCV的FLANN或者Brute-Force算法对特征点进行匹配。 4. 计算单应性矩阵。使用OpenCV的findHomography函数计算单应性矩阵,将当前图片与上一张图片进行拼接。 5. 图像拼接。使用OpenCV的warpPerspective函数将当前图片进行透视变换,然后将图片拼接到上一张图片上。 6. 重复步骤2-5,直到所有图片拼接完成。 下面是一个基于OpenCV实现全景图像拼接的示例代码: python import cv2 import numpy as np # 加载图片 img1 = cv2.imread('img1.jpg') img2 = cv2.imread('img2.jpg') # 特征点检测 sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 特征点匹配 bf = cv2.BFMatcher() matches = bf.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches: if m.distance < 0.75 * n.distance: good_matches.append(m) src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) # 计算单应性矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 图像拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 cv2.imshow('result', result) cv2.waitKey(0) cv2.destroyAllWindows() 这段代码实现了两张图片的拼接。你可以使用这个基本的框架,将多张图片进行拼接,从而实现全景图像拼接。
全景图像拼接是指将多张图像拼接在一起,形成一张宽度更大的图像,以展示更广阔的场景。在OpenCV中,可以使用投影变换(perspective transformation)来实现全景图像拼接。 首先,需要使用OpenCV的特征检测和描述算法(如SIFT、SURF等)来提取图像中的关键点和特征描述子。然后,通过匹配这些特征点,可以估计出两张图像之间的单应矩阵(homography matrix)。单应矩阵描述了两个平面之间的映射关系。 接下来,可以使用OpenCV的warpPerspective函数将其中一张图像进行透视变换,使其与另一张图像在同一个平面上。透视变换可以包括旋转、缩放、平移或剪切等操作。最后,将变换后的图像与原图像进行拼接,形成全景图像。 在代码中,可以使用Stitcher类来实现全景图像拼接。首先,读入需要拼接的图像,并将其传入stitch函数。在stitch函数中,会进行特征提取、特征匹配和单应矩阵估计等操作。最后,使用warpPerspective函数将图像进行透视变换,并将拼接后的图像返回。 总结起来,全景图像拼接的过程包括特征提取、特征匹配、单应矩阵估计和透视变换等步骤,通过这些步骤可以将多张图像拼接成一张全景图像。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* [opencv实际案例(三)全景图像的拼接](https://blog.csdn.net/weixin_44660348/article/details/113764084)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [使用OpenCV进行图像全景拼接](https://blog.csdn.net/qq_42722197/article/details/122315064)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
### 回答1: 图像拼接是将多张图像拼接成一张大图的过程。在使用OpenCV和Python进行图像拼接时,可以使用cv2库中的函数cv2.hconcat()和cv2.vconcat()来实现水平和垂直拼接。首先需要读取要拼接的图像,然后使用这两个函数进行拼接,最后保存拼接后的图像即可。需要注意的是,拼接的图像大小和通道数必须相同。 ### 回答2: OpenCV Python是一个强大的计算机视觉库,它可以在Python程序中进行图片处理,包括拼接图像。 图像拼接是将多张图像拼接成一张大图像的过程。它通常被使用在全景图像的创建或者是物体的跟踪上。OpenCV Python库提供了多种方法来实现图像拼接,以下是一个基本的步骤: 1. 读取图片:使用cv2.imread()函数读取需要拼接的图片。 2. 寻找特征点:使用SIFT(尺度不变特征转换)算法找到图片中的特征点。 3. 匹配特征点:使用cv2.FlannBasedMatcher()函数将特征点进行匹配。 4. 计算变换矩阵:使用cv2.findHomography函数计算变换矩阵。 5. 将图像拼接:使用cv2.warpPerspective()函数将图像拼接起来。 代码示例: import cv2 img1 = cv2.imread("image1.jpg") img2 = cv2.imread("image2.jpg") # create SIFT detector sift = cv2.xfeatures2d.SIFT_create() # detect key points and calculate descriptors kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # Flann-based matching matcher = cv2.FlannBasedMatcher() matches = matcher.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches: if m.distance < 0.5 * n.distance: good_matches.append(m) # calculate Homography matrix if len(good_matches) > 10: src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # stitch images dst = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) dst[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1]] = img2 cv2.imshow("Stitched Image", dst) cv2.waitKey() 这是一个基本的图像拼接过程,但在实际应用中,由于图像的角度、光照、噪声等因素的影响,需要对算法做更多的优化和改进,以达到更好的效果。 ### 回答3: OpenCV是一种开源计算机视觉库,可用于图像处理、视觉特征识别、视频处理、对象检测等应用领域。在其中,图像拼接是最为常见的应用之一,可以将多张图像合并成一张大图像。 针对Python的OpenCV,实现图像拼接的方法主要为以下三种: 1. 使用numpy库中的concatenate函数:首先将图片读进来,然后使用concatenate函数将图片拼接起来。该方法比较简单,但是需要注意的是,图片必须按照一定的顺序进行拼接。 2. 使用OpenCV中的函数hconcat和vconcat:Python的OpenCV库提供了两个函数,hconcat函数可用于将多张图片水平拼接,vconcat函数可用于将多张图片竖直拼接。使用该方法需要注意的是,图片的大小要是一致的,否则拼接后将会出现空白部分。 3. 使用OpenCV中的函数warpPerspective:该方法主要用于将不同角度或者位置的图片拼接在一起。该方法需要先进行图片的对齐处理,使其在同一平面上,然后使用warpPerspective函数进行透视变换,将多张图片拼接起来。 总体来说,使用Python的OpenCV实现图像拼接需要注意图片的大小、位置和角度等因素,选用合适的拼接方法,最终得到完整的并在一起的大图像。
OpenCV是一种开源计算机视觉库,可用于处理和分析图像,包括多图片拼接。多图片拼接是将多幅图片按照一定的规则和算法进行连接,形成一幅更大尺寸或更全面的图像。 在使用OpenCV进行多图片拼接时,首先需要将待拼接的图片加载到内存或者直接从摄像头获取图片。然后,根据需求选择适当的拼接算法,常见的拼接算法有简单的拼接、特征点匹配、全景拼接等。 在进行拼接之前,需要对图片进行一些预处理,例如调整图片的尺寸、均衡化图像的直方图、去噪等。这些预处理操作有助于提高拼接的效果和质量。 拼接过程中,关键的一步是特征点匹配。特征点是图像中具有辨识度和重复性的显著性点,通过对图像中的特征点进行匹配,可以确定图片之间的对应关系,从而进行拼接。OpenCV提供了一些特征点检测和匹配的算法,例如SIFT、SURF、ORB等。 在特征点匹配之后,需要进行图像的几何变换以及重叠区域的融合。常见的图像变换方法有仿射变换、透视变换等,这些变换可以根据特征点的位置和匹配关系将图片进行对齐和变换。融合过程中,可以使用像素级别的混合、渐变融合等技术,将不同图片的重叠区域进行平滑地过渡。 最后,通过OpenCV提供的图像保存函数,将拼接好的图像保存到文件或者显示在屏幕上。 总结来说,使用OpenCV进行多图片拼接需要加载图片、进行预处理、特征点匹配、几何变换、重叠区域融合等步骤。通过合理选择算法和参数,可以得到较好的拼接效果。

最新推荐

Python+OpenCV实现图像的全景拼接

主要为大家详细介绍了Python+OpenCV实现图像的全景拼接,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

python opencv 图像拼接的实现方法

高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图。这篇文章主要介绍了python opencv 图像拼接,需要的朋友可以参考下

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�

valueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

这个错误通常发生在使用 Pandas DataFrame 时,其中包含了一些不能被转换为数字类型的数据。 解决方法是使用 `pd.to_numeric()` 函数将数据转换为数字类型。例如: ```python import pandas as pd import numpy as np # 创建一个包含字符串和数字的 DataFrame df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, '3']}) # 尝试将整个 DataFrame 转换为数字类型会报错 np.asarray(df, dtype=np.float) # 使

基于VC--的五子棋程序设计与实现毕业设计.doc

基于VC--的五子棋程序设计与实现毕业设计.doc

体系结构驱动的普遍性应用程序中

体系结构驱动的普遍性应用程序的自主适应艾蒂安·甘德里勒引用此版本:艾蒂安·甘德里勒。由体系结构驱动的普遍性应用程序的自主适应。无处不在的计算。格勒诺布尔大学,2014年。法语。NNT:2014GRENM078。电话:01215004HAL ID:电话:01215004https://theses.hal.science/tel-01215004提交日期:2015年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文要获得的等级格勒诺布尔大学博士专业:计算机科学部长令:2006年提交人艾蒂安·G·安德里尔论文由Philippe LAlanda指导由Stephanie CHollet共同指导在格勒诺布尔计算机科学实验室编写数学、信息科学与技术、计算机科学博士体系结构驱动的普遍性应用程序的自主适应论文�