ffcv训练cifar10数据集
时间: 2023-12-09 09:04:21 浏览: 182
cifar10数据集
5星 · 资源好评率100%
好的,您可以按照以下步骤训练cifar10数据集:
1. 下载cifar10数据集并解压缩,可以使用以下命令:
```
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar -xzvf cifar-10-python.tar.gz
```
2. 安装必要的库,包括tensorflow和numpy等。
3. 编写训练代码,可以参考以下示例代码:
```python
import tensorflow as tf
import numpy as np
import os
# 加载数据集
def load_data():
data_dir = './cifar-10-batches-py'
train_images = np.zeros((50000, 32, 32, 3), dtype=np.uint8)
train_labels = np.zeros((50000,), dtype=np.uint8)
for i in range(1, 6):
data_file = os.path.join(data_dir, 'data_batch_%d' % i)
with open(data_file, 'rb') as f:
data_dict = pickle.load(f, encoding='bytes')
train_images[(i-1)*10000:i*10000] = data_dict[b'data'].reshape((10000, 3, 32, 32)).transpose((0,2, 3, 1))
train_labels[(i-1)*10000:i*10000] = data_dict[b'labels']
test_file = os.path.join(data_dir, 'test_batch')
with open(test_file, 'rb') as f:
data_dict = pickle.load(f, encoding='bytes')
test_images = data_dict[b'data'].reshape((10000, 3, 32, 32)).transpose((0, 2, 3, 1))
test_labels = np.array(data_dict[b'labels'], dtype=np.uint8)
return train_images, train_labels, test_images, test_labels
# 构建模型
def build_model():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
# 训练模型
def train_model():
train_images, train_labels, test_images, test_labels = load_data()
model = build_model()
model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
if __name__ == '__main__':
train_model()
```
4. 运行训练代码,等待训练完成。
阅读全文