相关性假设检验python
时间: 2023-09-24 20:07:07 浏览: 94
3.2数据假设检验.zip
在Python中进行相关性假设检验可以使用scipy库的spearmanr函数。下面是一个示例代码:
```python
# Example of the Spearman's Rank Correlation Test
from scipy.stats import spearmanr
data1 = [0.873, 2.817, 0.121, -0.945, -0.055, -1.436, 0.360, -1.478, -1.637, -1.869]
data2 = [0.353, 3.517, 0.125, -7.545, -0.555, -1.536, 3.350, -1.578, -3.537, -1.579]
stat, p = spearmanr(data1, data2)
print('stat=%.3f, p=%.3f' % (stat, p))
if p > 0.05:
print('Probably independent')
else:
print('Probably dependent')
```
这段代码首先导入了spearmanr函数,然后定义了两个数据集data1和data2。接下来,使用spearmanr函数计算了相关性统计量和p值。最后,根据p值的大小,判断两个数据集之间是否存在相关性。
在这个示例中,计算得到的相关性统计量(stat)为0.855,p值为0.002。由于p值小于0.05,我们拒绝了零假设,接受了备择假设,因此可以说这两个数据集之间存在相关性。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [python实现spearman相关性检验](https://blog.csdn.net/zhongkeyuanchongqing/article/details/119114151)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文