from tensorboardX
时间: 2023-10-25 11:26:42 浏览: 102
pytorch使用tensorboardX进行loss可视化实例
引用中提到了使用tensorboardX时需要导入from tensorboardX import SummaryWriter这个库函数。
当使用这个函数时,可以创建一个SummaryWriter对象,并指定一个文件路径作为参数,例如writer = SummaryWriter('../result_tensorboard')。通过这个对象,可以记录、保存和可视化训练过程中的标量数据。这样,我们就可以使用tensorboardX来进行标量可视化的操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [tensorboardX详解](https://blog.csdn.net/baidu_39211350/article/details/120487820)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [【pytorch训练】tensorboardX安装及使用](https://blog.csdn.net/All_In_gzx_cc/article/details/127733431)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文