基于AlexNet网络的CIFAR-100图像分类模型的代码
时间: 2024-12-28 18:33:24 浏览: 21
基于AlexNet的CIFAR-100图像分类模型是一种深度学习应用,它使用AlexNet(一种经典的卷积神经网络架构)对CIFAR-100数据集进行图像识别。以下是一个简单的PyTorch版本的AlexNet模型示例,用于CIFAR-100分类:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2)
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 100) # CIFAR-100的类别数
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 初始化模型
model = AlexNet()
# 预处理步骤(归一化、数据增强等)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载CIFAR-100数据集
train_dataset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform)
```
这个例子只包含了模型定义和基本的数据预处理,实际训练过程中还需要设置优化器、损失函数,并通过`torch.utils.data.DataLoader`加载数据进行迭代训练。
阅读全文