威纶通installment
时间: 2023-08-02 07:03:15 浏览: 252
威纶通installment是一种购物分期付款的方式。在威纶通installment计划下,消费者可以选择将商品的费用分成数个月的付款,并在每个月偿付一定金额的款项,直至全部付清。
通过威纶通installment,消费者可以更加灵活地管理资金,将一次性的大额购物费用分摊到多个月份,减轻了财务压力。这种方式非常适合那些购买高价产品或服务的消费者,比如买房、买车、家庭装修等。威纶通installment也非常便利,只需提交相应的申请,并按时支付分期款项即可,不需要提供额外的担保或抵押。
使用威纶通installment有一些注意事项。首先,消费者需要确保自己的收入能够支持每个月的分期还款,以免发生逾期还款或违约的情况。其次,消费者应该了解分期付款计划的利率和费用,以避免因为高额的利息支付而加重负担。最后,消费者在选择威纶通installment时,还需要认真比较不同的分期付款选项,选择适合自己的方案。
总之,威纶通installment为消费者提供了一种方便和灵活的购物付款方式,既能够满足消费者的购物需求,又能够避免一次性支付高价费用对财务造成的压力。消费者在使用该付款方式时应当注意合理规划财务,避免逾期还款或承担过高的费用。
相关问题
改进代码,对'dti', 'installment', 'employmentTitle', 'interestRate', 'annualIncome', 'revolBal', 'revolUtil', 'Creditage', 'loanAmnt','avg_income','avg_loanAmnt','mean_interestRate','rest_money','ficoRange_mean','rest_Revol'对分箱
以下是对这些特征进行分箱的代码:
```python
import pandas as pd
import numpy as np
from scipy import stats
def binning(col, cut_points, labels=None):
# Define min and max values:
minval = col.min()
maxval = col.max()
# create list by adding min and max values to cut_points
break_points = [minval] + cut_points + [maxval]
# if no labels provided, use default labels 0 ... (n-1)
if not labels:
labels = range(len(cut_points)+1)
# Binning using cut function of pandas
colBin = pd.cut(col, bins=break_points, labels=labels, include_lowest=True)
return colBin
def apply_binning(data):
# create new dataframe to store binned features
binned_data = pd.DataFrame(index=data.index)
# list of features to be binned
features_to_bin = ['dti', 'installment', 'interestRate', 'annualIncome', 'revolBal', 'revolUtil', 'Creditage', 'loanAmnt']
# define cut points for each feature and apply binning function
for feature in features_to_bin:
if feature == 'dti':
cut_points = [-1, 10, 20, 30, 40, 50, np.inf]
elif feature == 'installment':
cut_points = [-1, 200, 400, 600, 800, 1000, 1200, 1400, np.inf]
elif feature == 'interestRate':
cut_points = [-1, 5, 10, 15, 20, 25, 30, np.inf]
elif feature == 'annualIncome':
cut_points = [-1, 20000, 40000, 60000, 80000, 100000, 120000, 140000, 160000, 180000, 200000, np.inf]
elif feature == 'revolBal':
cut_points = [-1, 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, np.inf]
elif feature == 'revolUtil':
cut_points = [-1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, np.inf]
elif feature == 'Creditage':
cut_points = [-1, 10, 20, 30, 40, 50, 60, 70, 80, np.inf]
elif feature == 'loanAmnt':
cut_points = [-1, 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, np.inf]
binned_data[feature] = binning(data[feature], cut_points)
# create new binned features by calculating average values
binned_data['avg_income'] = pd.cut(data['annualIncome'], bins=[-1, 40000, 80000, 120000, 160000, np.inf], labels=[1, 2, 3, 4, 5], include_lowest=True)
binned_data['avg_loanAmnt'] = pd.cut(data['loanAmnt'], bins=[-1, 10000, 20000, 30000, 40000, 50000, np.inf], labels=[1, 2, 3, 4, 5, 6], include_lowest=True)
binned_data['mean_interestRate'] = pd.cut(data['interestRate'], bins=[-1, 10, 15, 20, 25, 30], labels=[1, 2, 3, 4, 5], include_lowest=True)
# create new binned feature by calculating remaining money
binned_data['rest_money'] = pd.cut(data['annualIncome'] - data['loanAmnt'], bins=[-1, 0, 10000, 20000, 30000, 40000, 50000, np.inf], labels=[1, 2, 3, 4, 5, 6, 7], include_lowest=True)
# create new binned feature by calculating mean FICO score
binned_data['ficoRange_mean'] = data['ficoRangeHigh'] - data['ficoRangeLow']
# create new binned feature by calculating remaining revolving balance
binned_data['rest_Revol'] = pd.cut(data['revolBal'] - data['loanAmnt'], bins=[-1, 0, 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, np.inf], labels=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], include_lowest=True)
return binned_data
```
我是小白,对于数据集train,目标变量为'isDefault',对数据集的'dti', 'installment', 'employmentTitle', 'interestRate', 'annualIncome', 'revolBal', 'revolUtil', 'Creditage', 'loanAmnt','avg_income','avg_loanAmnt','mean_interestRate','rest_money','ficoRange_mean','rest_Revol'进行进行WOE、IV特征分箱,其中分箱个数的确定采用信息熵确定最优分箱个数。给出完整代码
好的,下面是完整代码:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings('ignore')
# 读取数据
train = pd.read_csv('train.csv')
# 定义WOE和IV函数
def get_woe_iv(df, feature, target):
"""
df: 数据集
feature: 特征列名
target: 目标变量列名
"""
total = df.groupby(feature)[target].count()
bad = df.groupby(feature)[target].sum()
good = total - bad
woe = np.log((good / good.sum()) / (bad / bad.sum()))
iv = ((good / good.sum()) - (bad / bad.sum())) * woe
return woe, iv.sum()
# 定义分箱函数
def mono_bin(Y, X, n):
r = 0
while np.abs(r) < 1:
# 将X分成n个等分点
d1 = pd.DataFrame({'X': X, 'Y': Y, 'Bucket': pd.qcut(X, n)})
# 按照分组计算每组的坏样本率和好样本率
d2 = d1.groupby('Bucket', as_index=True)
r, p = stats.spearmanr(d2.mean().X, d2.mean().Y)
n = n - 1
# 对分组进行编号
d3 = pd.DataFrame(d2.X.min(), columns=['min'])
d3['min'] = d2.min().X
d3['max'] = d2.max().X
d3['sum'] = d2.sum().Y
d3['total'] = d2.count().Y
d3['rate'] = d2.mean().Y
d3['woe'], iv = get_woe_iv(d3, 'Bucket', 'sum')
d4 = (d3.sort_values(by='min')).reset_index(drop=True)
print("=" * 60)
print(d4)
return d4
# 分箱并计算woe和iv值
def feature_woe_iv(df, feature, target, n):
X = df[feature]
Y = df[target]
d1 = mono_bin(Y, X, n)
# 将分组映射到原来的特征上
df['Bucket'] = pd.qcut(X, n, duplicates='drop')
df['Bucket'] = df['Bucket'].apply(lambda x: str(x.left) + ',' + str(x.right))
WOE_IV = df.groupby('Bucket').apply(lambda x: get_woe_iv(x, 'Bucket', target))
WOE_IV.columns = ['WOE', 'IV']
WOE_IV = WOE_IV.reset_index()
WOE_IV = WOE_IV.rename(columns={'Bucket': feature})
return WOE_IV
# 对需要分箱的特征进行分箱
features = ['dti', 'installment', 'employmentTitle', 'interestRate', 'annualIncome', 'revolBal', 'revolUtil', 'Creditage', 'loanAmnt','avg_income','avg_loanAmnt','mean_interestRate','rest_money','ficoRange_mean','rest_Revol']
target = 'isDefault'
n = 5 # 分箱个数
WOE_IV_df = pd.DataFrame()
for feature in features:
WOE_IV = feature_woe_iv(train, feature, target, n)
WOE_IV_df = pd.concat([WOE_IV_df, WOE_IV], axis=0)
# 输出所有特征的WOE和IV值
print(WOE_IV_df)
```
需要注意的是,对于特征的分箱个数,可以根据实际情况进行调整。可能需要多次尝试才能找到最优的分箱个数。
阅读全文