python隐马尔可夫代码分析
时间: 2023-09-08 11:10:42 浏览: 192
根据引用和引用中提供的信息,Python中可以使用隐马尔可夫模型进行股市预测和分析。隐马尔可夫模型是一种有趣的随机过程,特别适用于分析时间序列数据。你可以使用hmmlearn库来扩展Python中的隐马尔可夫模型功能。在Anaconda环境中,你可以使用"conda install hmmlearn"命令直接安装该库。
下面是一段示例代码,用于训练和分析隐马尔可夫模型:
```python
import numpy as np
# 读取训练数据
file = open("traindata.txt", encoding='utf-8')
test_str = "中国首次火星探测任务天问一号探测器实施近火捕获制动"
new_sents = []
sents_labels = []
# 处理训练数据
for line in file.readlines():
line = line.split()
new_sent = ''
sent_labels = ''
for word in line:
if len(word) == 1:
new_sent = word
sent_labels = 'S'
elif len(word) >= 2:
new_sent = word
sent_labels = 'B' + 'M' * (len(word) - 2) + 'E'
if new_sent != '':
new_sents.append([new_sent])
sents_labels.append([sent_labels])
print("训练样本准备完毕!")
print('共有数据 %d 条' % len(new_sents))
print('平均长度:', np.mean([len(d<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [HMM隐马尔可夫模型股票价格预测(Python完整源码和数据)](https://download.csdn.net/download/m0_57362105/87337214)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [【Python机器学习】隐马尔可夫模型讲解及在中文分词中的实战(附源码和数据集)](https://blog.csdn.net/jiebaoshayebuhui/article/details/128397554)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文