stm32f407读取mpu6050数据例程

时间: 2023-07-27 22:01:34 浏览: 126
使用STM32F407读取MPU6050的数据可以通过以下例程进行实现: 首先,在STM32CubeIDE中创建一个新工程,并选择好对应的硬件配置。 然后,将MPU6050连接到STM32F407的I2C接口上,确保硬件连接正确无误。 接着,打开I2C总线并配置为所需的速率和参数。例如: ```c // 打开I2C总线 HAL_I2C_Init(&hi2c1); // 配置I2C速率和参数 hi2c1.Instance->CR2 = I2C_SPEED_STANDARD | I2C_CLOCK_FREQ; // 使能I2C总线 HAL_I2C_Enable(&hi2c1); ``` 然后,通过I2C总线读取MPU6050的加速度、陀螺仪和温度数据。例如: ```c uint8_t buffer[14]; // 设置MPU6050的地址 uint8_t deviceAddress = MPU6050_ADDRESS << 1; // 设置读取加速度、陀螺仪和温度数据的寄存器地址 uint8_t registerAddress = MPU6050_ACCEL_XOUT_H; // 发送寄存器地址 HAL_I2C_Master_Transmit(&hi2c1, deviceAddress, &registerAddress, 1, HAL_MAX_DELAY); // 读取数据 HAL_I2C_Master_Receive(&hi2c1, deviceAddress, buffer, sizeof(buffer), HAL_MAX_DELAY); // 解析数据 int16_t accelX = (buffer[0] << 8) | buffer[1]; int16_t accelY = (buffer[2] << 8) | buffer[3]; int16_t accelZ = (buffer[4] << 8) | buffer[5]; int16_t gyroX = (buffer[8] << 8) | buffer[9]; int16_t gyroY = (buffer[10] << 8) | buffer[11]; int16_t gyroZ = (buffer[12] << 8) | buffer[13]; float temperature = (buffer[6] << 8) | buffer[7]; // 对数据进行处理或输出 ... ``` 最后,根据需求对读取到的数据进行处理或输出,例如将数据发送到串口或显示在LCD屏幕上,或者根据加速度和陀螺仪数据计算出相应的姿态信息。 需要注意的是,以上仅是一个简单的例程,实际应用中还需要考虑到数据的校验、滤波、数据的单位转换等问题,以及异常情况的处理。 希望以上的回答对您有帮助,祝您成功实现STM32F407读取MPU6050的数据!

相关推荐

rar
#include "i2c.h" #include "stm32f10x.h" #include <math.h> //Keil library // ¶¨ÒåMPU6050ÄÚ²¿µØÖ· //**************************************** #define SMPLRT_DIV 0x19 //ÍÓÂÝÒDzÉÑùÂÊ£¬µäÐÍÖµ£º0x07(125Hz) #define CONFIG 0x1A //µÍͨÂ˲¨ÆµÂÊ£¬µäÐÍÖµ£º0x06(5Hz) #define GYRO_CONFIG 0x1b //ÍÓÂÝÒÇ×Լ켰²âÁ¿·¶Î§£¬µäÐÍÖµ£º0x18(²»×Լ죬2000deg/s) #define ACCEL_CONFIG 0x1c //¼ÓËÙ¼Æ×Լ졢²âÁ¿·¶Î§¼°¸ßͨÂ˲¨ÆµÂÊ£¬µäÐÍÖµ£º0x01(²»×Լ죬2G£¬5Hz) #define ACCEL_XOUT_H 0x3B #define ACCEL_XOUT_L 0x3C #define ACCEL_YOUT_H 0x3D #define ACCEL_YOUT_L 0x3E #define ACCEL_ZOUT_H 0x3F #define ACCEL_ZOUT_L 0x40 #define TEMP_OUT_H 0x41 #define TEMP_OUT_L 0x42 #define GYRO_XOUT_H 0x43 #define GYRO_XOUT_L 0x44 #define GYRO_YOUT_H 0x45 #define GYRO_YOUT_L 0x46 #define GYRO_ZOUT_H 0x47 #define GYRO_ZOUT_L 0x48 #define PWR_MGMT_1 0x6B //µçÔ´¹ÜÀí£¬µäÐÍÖµ£º0x00(Õý³£ÆôÓÃ) #define WHO_AM_I 0x75 //IICµØÖ·¼Ä´æÆ÷(ĬÈÏÊýÖµ0x68£¬Ö»¶Á) #define MPU6050_Addr 0xd0 //¶¨ÒåÆ÷¼þÔÚIIC×ÜÏßÖеĴӵØÖ·,¸ù¾ÝALT ADDRESSµØÖ·Òý½Å²»Í¬ÐÞ¸Ä #define SCL_H GPIOB->BSRR = GPIO_Pin_6 #define SCL_L GPIOB->BRR = GPIO_Pin_6 #define SDA_H GPIOB->BSRR = GPIO_Pin_7 #define SDA_L GPIOB->BRR = GPIO_Pin_7 #define SCL_read GPIOB->IDR & GPIO_Pin_6 #define SDA_read GPIOB->IDR & GPIO_Pin_7 void SDA_IOIN(void); void SDA_IOOUT(void); void I2C_delay(void); void delay5ms(void); u8 I2C_Start(void); void I2C_Stop(void); void I2C_Ack(void); void I2C_NoAck(void); u8 I2C_WaitAck(void); void I2C_SendByte(u8 SendByte) ; unsigned char I2C_RadeByte(void); void READ_MPU6050(void); u8 Single_Write(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char REG_data); void GPIO_Configuration(void); void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB , ENABLE ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); } unsigned char BUF[15]; //½ÓÊÕÊý¾Ý»º´æÇø char TX_DATA[4]; //ÏÔʾ¾Ý»º´æÇø short T_X,A_X,T_Y,A_Y,T_Z,A_Z,T_T; void SDA_IOOUT(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 ; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; // ¿ªÂ©Êä³ö GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // ×î¸ßÊä³öËÙÂÊ50MHz GPIO_Init(GPIOB, &GPIO_InitStructure); // Ñ¡ÔñC¶Ë¿Ú } void SDA_IOIN(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 ; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; // ¸¡¿ÕÊäÈë GPIO_Init(GPIOB, &GPIO_InitStructure); // Ñ¡ÔñC¶Ë¿Ú } void Init_MPU6050() { // Single_Write(MPU6050_Addr,PWR_MGMT_1, 0x80); // delay5ms(); Single_Write(MPU6050_Addr,PWR_MGMT_1, 0x00); delay5ms(); //½â³ýÐÝÃß״̬ Single_Write(MPU6050_Addr,SMPLRT_DIV, 0x07); delay5ms();//²ÉÑùËÙÂÊΪ Single_Write(MPU6050_Addr,CONFIG, 0x06); delay5ms(); Single_Write(MPU6050_Addr,GYRO_CONFIG, 0x18); delay5ms(); //ÍÓÂÝÒǼì²â·¶Î§500¶È/Ãë Single_Write(MPU6050_Addr,ACCEL_CONFIG, 0x01); delay5ms(); //¼ÓËÙÆ÷¼ì²â·¶Î§4G GPIO_Configuration(); }; unsigned char Single_Write(unsigned char SlaveAddress, unsigned char REG_Address, unsigned char REG_data) //void { if(!I2C_Start())return 0; I2C_SendByte(SlaveAddress); //·¢ËÍÉ豸µØÖ·+дÐźÅ//I2C_SendByte(((REG_Address & 0x0700) >>7) | SlaveAddress & 0xFFFE);//ÉèÖøßÆðʼµØÖ·+Æ÷¼þµØÖ· // if(!I2C_WaitAck()){I2C_Stop(); return 0;} I2C_WaitAck(); I2C_SendByte(REG_Address); //ÉèÖõÍÆðʼµØÖ· I2C_WaitAck(); I2C_SendByte(REG_data); I2C_WaitAck(); I2C_Stop(); delay5ms(); return 1; } unsigned char Single_Read(unsigned char SlaveAddress,unsigned char REG_Address) { unsigned char REG_data; I2C_Start(); I2C_SendByte(SlaveAddress); //I2C_SendByte(((REG_Address & 0x0700) >>7) | REG_Address & 0xFFFE);//ÉèÖøßÆðʼµØÖ·+Æ÷¼þµØÖ· I2C_WaitAck(); I2C_SendByte((u8) REG_Address); //ÉèÖõÍÆðʼµØÖ· I2C_WaitAck(); I2C_Start(); I2C_SendByte(SlaveAddress+1); I2C_WaitAck(); REG_data= I2C_RadeByte(); I2C_NoAck(); I2C_Stop(); //return 1; return REG_data; } /******************************************************************************* * Function Name : I2C_delay * Description : Simulation IIC Timing series delay * Input : None * Output : None * Return : None ****************************************************************************** */ void I2C_delay(void) { u8 i=30; //ÕâÀï¿ÉÒÔÓÅ»¯ËÙ¶È £¬¾­²âÊÔ×îµÍµ½5»¹ÄÜдÈë while(i) { i--; } } void delay5ms(void) { int i=5000; while(i) { i--; } } /******************************************************************************* * Function Name : I2C_Start * Description : Master Start Simulation IIC Communication * Input : None * Output : None * Return : Wheather Start ****************************************************************************** */ u8 I2C_Start(void) { SDA_IOOUT(); SDA_H; SCL_H; I2C_delay(); if(!SDA_read)return 0; //SDAÏßΪµÍµçƽÔò×ÜÏßæ,Í˳ö SDA_L; I2C_delay(); if(SDA_read) return 0; //SDAÏßΪ¸ßµçƽÔò×ÜÏß³ö´í,Í˳ö SDA_L; I2C_delay(); SCL_L; return 1; } /******************************************************************************* * Function Name : I2C_Stop * Description : Master Stop Simulation IIC Communication * Input : None * Output : None * Return : None ****************************************************************************** */ void I2C_Stop(void) { SDA_IOOUT(); SCL_L; I2C_delay(); SDA_L; I2C_delay(); SCL_H; I2C_delay(); SDA_H; I2C_delay(); } /******************************************************************************* * Function Name : I2C_Ack * Description : Master Send Acknowledge Single * Input : None * Output : None * Return : None ****************************************************************************** */ void I2C_Ack(void) { SCL_L; I2C_delay(); SDA_L; I2C_delay(); SCL_H; I2C_delay(); SCL_L; I2C_delay(); } /******************************************************************************* * Function Name : I2C_NoAck * Description : Master Send No Acknowledge Single * Input : None * Output : None * Return : None ****************************************************************************** */ void I2C_NoAck(void) { SCL_L; I2C_delay(); SDA_H; I2C_delay(); SCL_H; I2C_delay(); SCL_L; I2C_delay(); } /******************************************************************************* * Function Name : I2C_WaitAck * Description : Master Reserive Slave Acknowledge Single * Input : None * Output : None * Return : Wheather Reserive Slave Acknowledge Single ****************************************************************************** */ u8 I2C_WaitAck(void) //·µ»ØΪ:=1ÓÐACK,=0ÎÞACK { SDA_IOIN(); SCL_L; I2C_delay(); SDA_H; I2C_delay(); SCL_H; I2C_delay(); if(SDA_read) { SCL_L; SDA_IOOUT(); I2C_delay(); return 0; } SCL_L; SDA_IOOUT(); I2C_delay(); return 1; } /******************************************************************************* * Function Name : I2C_SendByte * Description : Master Send a Byte to Slave * Input : Will Send Date * Output : None * Return : None ****************************************************************************** */ void I2C_SendByte( unsigned char SendByte) //Êý¾Ý´Ó¸ßλµ½µÍλ// { u8 i=8; while(i--) { SCL_L; I2C_delay(); if(SendByte&0x80) SDA_H; else SDA_L; SendByte<<=1; I2C_delay(); SCL_H; I2C_delay(); } SCL_L; } /******************************************************************************* * Function Name : I2C_RadeByte * Description : Master Reserive a Byte From Slave * Input : None * Output : None * Return : Date From Slave ****************************************************************************** */ unsigned char I2C_RadeByte(void) //Êý¾Ý´Ó¸ßλµ½µÍλ// { u8 i=8; u8 ReceiveByte=0; SDA_IOIN(); while(i--) { ReceiveByte<<=1; SCL_L; I2C_delay(); SCL_H; I2C_delay(); if(SDA_read) { ReceiveByte|=0x01; } } SCL_L; return ReceiveByte; } void READ_MPU6050(void) { BUF[0]=Single_Read(MPU6050_Addr,GYRO_XOUT_L); BUF[1]=Single_Read(MPU6050_Addr,GYRO_XOUT_H); T_X= (BUF[1]<<8)|BUF[0]; // T_X/=16.4; //¶ÁÈ¡¼ÆËãXÖá½ÇËÙ¶È BUF[2]=Single_Read(MPU6050_Addr,GYRO_YOUT_L); BUF[3]=Single_Read(MPU6050_Addr,GYRO_YOUT_H); T_Y= (BUF[3]<<8)|BUF[2]; // T_Y/=16.4; //¶ÁÈ¡¼ÆËãYÖá½ÇËÙ¶È BUF[4]=Single_Read(MPU6050_Addr,GYRO_ZOUT_L); BUF[5]=Single_Read(MPU6050_Addr,GYRO_ZOUT_H); T_Z= (BUF[5]<<8)|BUF[4]; // T_Z/=16.4; //¶ÁÈ¡¼ÆËãZÖá½ÇËÙ¶È BUF[6]=Single_Read(MPU6050_Addr,ACCEL_XOUT_L); BUF[7]=Single_Read(MPU6050_Addr,ACCEL_XOUT_H); A_X= (BUF[7]<<8)|BUF[6]; // A_X/=8192.0; //¶ÁÈ¡¼ÆËãXÖá¼ÓËÙ¶È BUF[8]=Single_Read(MPU6050_Addr,ACCEL_YOUT_L); BUF[9]=Single_Read(MPU6050_Addr,ACCEL_YOUT_H); A_Y= (BUF[9]<<8)|BUF[8]; // A_Y/=8192.0; //¶ÁÈ¡¼ÆËãYÖá¼ÓËÙ¶È BUF[10]=Single_Read(MPU6050_Addr,ACCEL_ZOUT_L); BUF[11]=Single_Read(MPU6050_Addr,ACCEL_ZOUT_H); A_Z= (BUF[11]<<8)|BUF[10]; // A_Z/=8192.0; //¶ÁÈ¡¼ÆËãZÖá¼ÓËÙ¶È BUF[12]=Single_Read(MPU6050_Addr,TEMP_OUT_L); BUF[13]=Single_Read(MPU6050_Addr,TEMP_OUT_H); T_T=(BUF[13]<<8)|BUF[12]; T_T = 35+ ((double) (T_T + 13200)) / 280;// ¶ÁÈ¡¼ÆËã³öÎÂ¶È }

最新推荐

recommend-type

基于STM32和MPU6050的空中鼠标的设计与实现

基于STM32和MPU6050的空中鼠标的设计与实现 ,本项目将采用STM32F103来制作一款空中鼠标,在方便实用的同时整体成本亦较低廉。鼠标的具体指标如下:工作频率2.4GHz,传输距离大于等于5m,动作准确率大于90%,分辨率...
recommend-type

关于基于STM8S,MPU6050驱动的说明及程序

在设计基于STM8S的MPU6050驱动程序时,需要考虑到MPU6050的通信协议、数据处理、IO配置等多个方面。MPU6050是一个六轴陀螺仪加速度传感器,使用IIC通信协议与微控制器进行通信。为了实现MPU6050的驱动程序,我们需要...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,