gjr-garch模型并利用股票月收益率计算VaR代码
时间: 2024-09-28 10:02:58 浏览: 47
:基于MCMC算法的GJR-GARCH模型的贝叶斯推断 上证指数
GJR-GARCH(Generalized Autoregressive Conditional Heteroskedasticity with GARCH-in-Mean)是一种改进的广义自回归条件异方差模型,它考虑了正负收益事件对波动率的影响存在不对称性。GJR部分代表GARCH-in-mean的修改版,引入了一个额外的截距项,当负回报发生时会增加方差,增强了对极端负面情况下的风险估计。
要使用GJR-GARCH模型并利用股票月收益率计算Value at Risk (VaR),你需要通过以下步骤编写代码:
1. 导入必要的库:
```python
import numpy as np
import pandas as pd
from statsmodels.tsa.stattools import adfuller
from arch import arch_model
from sklearn.preprocessing import StandardScaler
from scipy.stats import norm
```
2. 准备数据:
```python
# 假设data_monthly是包含股票月收益率的pandas DataFrame
data_monthly = ... # 读取或提供实际的数据
```
3. 数据预处理(例如检验平稳性、标准化等):
```python
def test_stationarity(series):
_, p_value, _, _, _ = adfuller(series)
return p_value
# 检查收益率是否平稳
is_stationary = test_stationarity(data_monthly['returns'])
if not is_stationary < 0.05:
data_monthly['returns'] = data_monthly['returns'].diff().dropna()
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data_monthly['returns'].values.reshape(-1, 1))
```
4. 构建GJR-GARCH模型:
```python
model = arch_model(scaled_data, vol='GJR', mean='Constant')
result = model.fit(disp=0) # 运行GJR-GARCH估计
```
5. 计算VaR(假设95%置信水平):
```python
confidence_level = 0.95
critical_values = result.conf_int(alpha=confidence_level)
one_tailed_p_value = result.test('Ljung-Box Q(1)', ret_df=False)
if one_tailed_p_value > confidence_level:
VaR = critical_values[0][1] * scaled_data.std() # 因为是正态分布的一侧
else:
VaR = critical_values[1][1] * scaled_data.std() # 对称分布两侧的较大值
VaR = scaler.inverse_transform(np.array([VaR]))[0][0]
```
阅读全文