c语言红黑树核心代码
时间: 2023-11-16 10:57:23 浏览: 80
红黑树是一种自平衡的二叉查找树,它的核心代码如下:
```
enum Color{RED,BLACK};
template<class K, class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
K _key;
V _value;
Color _col;
RBTreeNode(const K& key = K(), const V& value = V())
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _key(key)
, _value(value)
, _col(RED)
{}
};
template<class K, class V, class KeyOfValue>
class RBtree
{
public:
typedef RBTreeNode<K, V> Node;
typedef Node* pNode;
RBtree()
:_pHead(new Node)
{
_pHead->_left = _pHead;
_pHead->_right = _pHead;
}
bool Insert(const V& value)
{
pNode& pRoot = _pHead->_parent;
pNode pCur = pRoot;
pNode pParent = _pHead;
while (pCur)
{
if (_keyOfValue(value) < _keyOfValue(pCur->_value))
{
pParent = pCur;
pCur = pCur->_left;
}
else if (_keyOfValue(value) > _keyOfValue(pCur->_value))
{
pParent = pCur;
pCur = pCur->_right;
}
else
{
return false;
}
}
pCur = new Node(_keyOfValue(value), value);
if (pParent == _pHead || _keyOfValue(value) < _keyOfValue(pParent->_value))
{
pParent->_left = pCur; pCur->_parent = pParent;
}
else
{
pParent->_right = pCur;
pCur->_parent = pParent;
}
while (pCur != pRoot && pCur->_parent->_col == RED)
{
pNode pParent = pCur->_parent;
pNode pGrand = pParent->_parent;
if (pParent == pGrand->_left)
{
pNode pUncle = pGrand->_right;
if (pUncle && pUncle->_col == RED)
{
pParent->_col = BLACK;
pUncle->_col = BLACK;
pGrand->_col = RED;
pCur = pGrand;
}
else
{
if (pCur == pParent->_right)
{
RotateL(pParent);
swap(pCur, pParent);
}
pParent->_col = BLACK;
pGrand->_col = RED;
RotateR(pGrand);
}
}
else
{
pNode pUncle = pGrand->_left;
if (pUncle && pUncle->_col == RED)
{
pParent->_col = BLACK;
pUncle->_col = BLACK;
pGrand->_col = RED;
pCur = pGrand;
}
else
{
if (pCur == pParent->_left)
{
RotateR(pParent);
swap(pCur, pParent);
}
pParent->_col = BLACK;
pGrand->_col = RED;
RotateL(pGrand);
}
}
}
pRoot->_col = BLACK;
return true;
}
bool isValidRBtree()
{
pNode cur = _pHead->_parent;
int BlackCount = 0;
while (cur)
{
if (cur->_col == BLACK)
++BlackCount;
cur = cur->_left;
}
return _isValidRBtree(_pHead->_parent, 0, BlackCount);
}
private:
void RotateL(pNode pParent)
{
pNode pSubR = pParent->_right;
pNode pSubRL = pSubR->_left;
pParent->_right = pSubRL;
if (pSubRL)
pSubRL->_parent = pParent;
pNode pPParent = pParent->_parent;
pSubR->_left = pParent;
pParent->_parent = pSubR;
if (pParent == _pHead->_parent)
{
_pHead->_parent = pSubR;
pSubR->_parent = _pHead;
}
else
{
if (pParent == pPParent->_left)
pPParent->_left = pSubR;
else
pPParent->_right = pSubR;
pSubR->_parent = pPParent;
}
}
void RotateR(pNode pParent)
{
pNode pSubL = pParent->_left;
pNode pSubLR = pSubL->_right;
pParent->_left = pSubLR;
if (pSubLR)
pSubLR->_parent = pParent;
pNode pPParent = pParent->_parent;
pSubL->_right = pParent;
pParent->_parent = pSubL;
if (pParent == _pHead->_parent)
{
_pHead->_parent = pSubL;
pSubL->_parent = _pHead;
}
else
{
if (pParent == pPParent->_left)
pPParent->_left = pSubL;
else
pPParent->_right = pSubL;
pSubL->_parent = pPParent;
}
}
bool _isValidRBtree(pNode cur, int curCount, int BlackCount)
{
if (cur == nullptr)
return curCount == BlackCount;
if (cur->_col == RED && cur->_parent->_col == RED)
return false;
if (cur->_col == BLACK)
++curCount;
return _isValidRBtree(cur->_left, curCount, BlackCount) && _isValidRBtree(cur->_right, curCount, BlackCount);
}
private:
pNode _pHead;
KeyOfValue _keyOfValue;
};
```
阅读全文