我说反了,是4个自变量,一个因变量
时间: 2024-04-14 22:27:21 浏览: 135
抱歉,我理解错了。下面是修正后的代码,其中有四个自变量和一个因变量:
```matlab
function [coefficients, equation] = particleSwarmOptimization(data, degree, numParticles, maxIterations)
% 数据准备
x = data(:, 1:4); % 自变量
y = data(:, 5); % 因变量
% 初始化粒子群
numCoefficients = degree + 1; % 待定系数个数
particles = rand(numParticles, numCoefficients);
velocities = zeros(numParticles, numCoefficients);
pBestPositions = particles;
pBestValues = inf(numParticles, 1);
gBestValue = inf;
gBestPosition = zeros(1, numCoefficients);
% 迭代优化
for iteration = 1:maxIterations
for particle = 1:numParticles
% 计算粒子的适应度函数值
currentCoefficients = particles(particle, :);
predictedY = polyval(currentCoefficients, x);
error = sqrt(mean((y - predictedY).^2));
% 更新个体最优解
if error < pBestValues(particle)
pBestValues(particle) = error;
pBestPositions(particle, :) = currentCoefficients;
end
% 更新全局最优解
if error < gBestValue
gBestValue = error;
gBestPosition = currentCoefficients;
end
% 更新粒子速度和位置
w = 0.5; % 惯性权重
c1 = 1; % 学习因子1
c2 = 1; % 学习因子2
r1 = rand(1, numCoefficients);
r2 = rand(1, numCoefficients);
velocities(particle, :) = w * velocities(particle, :) + c1 * r1 .* (pBestPositions(particle, :) - particles(particle, :)) + c2 * r2 .* (gBestPosition - particles(particle, :));
particles(particle, :) = particles(particle, :) + velocities(particle, :);
end
end
% 输出回归方程
coefficients = gBestPosition;
equation = poly2str(gBestPosition);
end
```
使用示例:
```matlab
% 假设你的数据保存在一个名为data的矩阵中,其中前四列是自变量,最后一列是因变量
data = [x1, x2, x3, x4, y];
degree = 2; % 多项式的阶数
numParticles = 50; % 粒子数
maxIterations = 100; % 最大迭代次数
[coefficients, equation] = particleSwarmOptimization(data, degree, numParticles, maxIterations);
disp('回归方程:');
disp(equation);
```
同样,这只是一个简单的示例代码,请根据你的实际情况进行适当修改和调整。
阅读全文