aprior算法关联规则
时间: 2024-03-28 21:33:23 浏览: 66
Apriori算法是一种常用的关联规则挖掘算法[^1]。它通过扫描数据集多次来发现频繁项集,然后利用频繁项集生成关联规则。Apriori算法的基本思想是利用频繁项集的性质,即如果一个项集是频繁的,那么它的所有子集也是频繁的。算法的过程如下:
1. 初始化:将每个项作为单独的项集,并计算每个项集的支持度。
2. 迭代生成候选项集:根据上一次迭代得到的频繁项集,生成候选项集。候选项集的生成过程是通过连接和剪枝操作实现的。
- 连接:将频繁项集按照长度进行连接,得到候选项集。
- 剪枝:对于候选项集,检查其所有子集是否都是频繁项集,如果不是,则剪枝。
3. 计算候选项集的支持度:扫描数据集,统计每个候选项集的支持度。
4. 生成频繁项集:根据候选项集的支持度,筛选出满足最小支持度阈值的频繁项集。
5. 生成关联规则:对于每个频繁项集,生成其所有非空子集作为规则的前件,计算规则的置信度和提升度。
- 置信度:规则的置信度表示在前件出现的情况下,后件也出现的概率。
- 提升度:规则的提升度表示在前件出现的情况下,后件出现的概率相对于在整个数据集中出现的概率的提升程度。
通过Apriori算法,可以挖掘出频繁项集和关联规则,从而发现物品之间的相关性。这些关联规则可以应用于广告推荐、流量探索等领域。
相关问题
关联规则aprior算法代码实现
以下是Apriori算法的Python实现:
```python
def loadDataSet():
"""
创建一个用于测试的简单数据集
"""
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
"""
创建初始候选项集C1
"""
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return map(frozenset, C1)
def scanD(D, Ck, minSupport):
"""
从候选项集Ck生成符合最小支持度的项集Lk
"""
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt:
ssCnt[can] = 1
else: ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key]/numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList, supportData
def aprioriGen(Lk, k):
"""
根据Lk生成候选项集Ck+1
"""
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort()
if L1==L2:
retList.append(Lk[i] | Lk[j])
return retList
def apriori(dataSet, minSupport = 0.5):
"""
Apriori算法
"""
C1 = createC1(dataSet)
D = map(set, dataSet)
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData
```
使用方法如下:
```python
dataSet = loadDataSet()
L, suppData = apriori(dataSet, minSupport=0.5)
print(L)
print(suppData)
```
其中,`dataSet`是数据集,`minSupport`是最小支持度。`L`即为频繁项集,`suppData`是包含支持度信息的字典。
关联规则Aprior算法实现与优化
Apriori算法是一种经典的频繁项集挖掘算法,用于发现数据集中的频繁项集。它的基本思想是通过迭代的方式,从数据集中找到所有的频繁项集。Apriori算法的核心思想是利用候选集的包含关系,通过减少候选集的规模来加快算法运行速度。
Apriori算法的基本流程如下:
1. 扫描数据集,得到所有的候选项集。
2. 计算所有候选项集的支持度,保留支持度大于等于最小支持度阈值的项集。
3. 由保留的频繁项集生成新的候选项集,并重复步骤2和3,直到没有更多的频繁项集被发现。
Apriori算法的主要优化方法有以下几种:
1. 剪枝策略
可以通过剪枝策略来减少候选项集的数量,从而加快算法的执行速度。可以使用Apriori原理,即一个频繁项集的子集一定是频繁项集,来减少候选项集的生成。
2. 支持度计数
可以利用数据集的特点,例如可以使用哈希表来快速计算每个项集的支持度,避免了多次扫描数据集的开销。
3. 数据结构优化
可以使用多种数据结构来存储候选项集和频繁项集,例如使用树结构或位图来存储项集,从而减少内存的使用和查询时间。
4. 并行计算
可以使用多线程或分布式计算的技术,将数据集分成多个部分并行计算,从而加快算法的执行速度。
总之,Apriori算法的实现和优化是一个非常重要的研究方向,可以通过不同的优化方法来提高算法的性能,从而更好地处理大规模数据集的挖掘任务。
阅读全文