federated learning for credit scoring with multi-party computation
时间: 2023-09-18 18:04:14 浏览: 155
联邦学习是一种通过多方计算(MPC)进行信用评分的方法。信用评分是评估个人信用风险的重要工具,但在传统模型中,所有的个人数据都必须集中在一起进行建模和分析,这会引发隐私和数据安全的担忧。
联邦学习通过在保持数据分散的同时进行模型训练,解决了这些问题。在这一方法中,各方参与者共享他们的本地模型,而不是直接共享他们的数据。每个参与者都单独训练模型,并将更新的模型参数发送给中央服务器。服务器对接收到的参数进行聚合,生成一个全局模型,然后将更新的模型参数再次分发给各参与者。这个过程迭代进行,直到全局模型收敛并达到所需的性能。
联邦学习具有以下优点:首先,隐私得到了保护,因为个人数据不必共享;其次,数据安全风险降低,因为数据不必发送到中央服务器;再次,由于数据分布保持不变,模型的准确性和鲁棒性可以得到保证。
在信用评分方面,用联邦学习进行多方计算,可以使多个金融机构之间能够合作进行信用评分,而不必共享客户的个人数据。这种方法可以提高信用评分的效果,同时保护客户的隐私和数据安全。
总而言之,联邦学习通过多方计算解决了信用评分中的隐私和数据安全问题。这种方法可以促进金融机构之间的合作,并提高信用评分的准确性和效率。
相关问题
spreadgnn: serverless multi-task federated learning for graph neural network
spreadgnn是一种无服务器多任务联邦学习方法,针对图神经网络。联邦学习是一种新兴的机器学习方法,它允许不同设备(例如移动设备)上的数据进行局部训练,然后将训练后的模型聚合,以获得更好的泛化性能。Graph Neural Network是一类可以处理图形和网络数据的神经网络,目前在社交网络、化学和蛋白质结构等领域有广泛应用。
spreadgnn使用无服务器架构设计来实现多任务联邦学习。本方法采用一种名为Federated Averaging的模型聚合方法,它将本地模型分发到各个设备上,让每个设备进行本地模型的训练,并将本地模型更新结果汇聚回全局模型中。spreadgnn还使用了一种名为联邦学习架构的方法来处理不同的联邦学习任务,以提高模型泛化性能。同时,spreadgnn使用了一种名为GraphSage的图神经网络模型,以应对图和网络数据。
总之,spreadgnn在无服务器架构、Federated Averaging、联邦学习架构和GraphSage等方面做出了创新,能够有效地应对多任务联邦学习的挑战。
Multi-objective Evolutionary Federated Learning
Multi-objective evolutionary federated learning (MEFL) is a machine learning approach that combines the principles of multi-objective optimization and federated learning. Multi-objective optimization is a technique that aims to optimize multiple objectives simultaneously, while federated learning is a decentralized machine learning approach that allows multiple devices to train a model collaboratively without sharing their data.
MEFL is designed to overcome the limitations of traditional federated learning approaches, which often suffer from issues related to privacy, communication, and scalability. By using multi-objective optimization, MEFL can optimize the performance of the federated learning algorithm while also addressing these issues.
MEFL works by dividing the optimization problem into multiple objectives, such as minimizing the loss function, reducing communication costs, and preserving privacy. A genetic algorithm is then used to optimize these objectives simultaneously, producing a set of Pareto-optimal solutions that represent the trade-offs between the different objectives.
These Pareto-optimal solutions can then be used to select the best model for deployment, depending on the specific requirements of the application. MEFL has been shown to be effective in a wide range of applications, including image classification, natural language processing, and speech recognition.
Overall, MEFL represents a promising approach to federated learning that can improve the privacy, communication, and scalability of the algorithm while also optimizing its performance.
阅读全文
相关推荐















