我没有GL/glut.h的库,我希望我的include包含下面内容:#include <iostream> #include <cmath> #include <glad/glad.h> #include <GLFW/glfw3.h>,请帮我修改代码

时间: 2024-03-22 07:35:42 浏览: 23
如果你没有GL/glut.h库,但希望包含上述内容,你可以按照以下步骤进行修改代码: 1. 首先,确保你已经安装了GLFW库和glad库。你可以通过以下命令在Linux系统上安装它们: ``` sudo apt-get install libglfw3-dev sudo apt-get install libgl1-mesa-dev ``` 2. 然后,将你的代码修改为以下形式: ```cpp #include <iostream> #include <cmath> #include <glad/glad.h> #include <GLFW/glfw3.h> ``` 这样,你就可以使用iostream、cmath、glad和GLFW库了。
相关问题

#define _USE_MATH_DEFINES #include <cstdlib> #include <cmath> #include <iostream> #include <GL/glew.h> #include <GL/freeglut.h> // Globals. static float R = 40.0; // Radius of circle. static float X = 50.0; // X-coordinate of center of circle. static float Y = 50.0; // Y-coordinate of center of circle. static const int numVertices = 50; // Number of vertices on circle. static int verticesColors[6 * numVertices]; void generateVertices() { float t = 0; // Angle parameter. for (int i = 0; i < 6*numVertices; i+=6) { verticesColors[] = X + R * cos(t); //x verticesColors[] = Y + R * sin(t); //y verticesColors[] = 0.0; //z verticesColors[] = 1.0; //r verticesColors[] = 0.0; //g verticesColors[] = 0.0; //b t += 2 * M_PI / numVertices; //angle } } // Drawing routine. void drawScene(void) { glClear(GL_COLOR_BUFFER_BIT); glColor3f(1, 0, 0); glLineWidth(5); glDrawArrays(GL_LINE_LOOP, 0, 50); glFlush(); } // Initialization routine. void setup(void) { glClearColor(1.0, 1.0, 1.0, 0.0); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[0]); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[3]) } // OpenGL window reshape routine. void resize(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } // Keyboard input processing routine. void keyInput(unsigned char key, int x, int y) { switch (key) { case 27: exit(0); break; default: break; } } // Main routine. int main(int argc, char** argv) { generateVertices(); glutInit(&argc, argv); glutInitContextVersion(4, 3); glutInitContextProfile(GLUT_COMPATIBILITY_PROFILE); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA); glutInitWindowSize(500, 500); glutInitWindowPosition(100, 100); glutCreateWindow("circle.cpp"); glutDisplayFunc(drawScene); glutReshapeFunc(resize); glutKeyboardFunc(keyInput); glewExperimental = GL_TRUE; glewInit(); setup(); glutMainLoop(); }怎么修改

这段代码存在一些错误,需要进行修改,具体如下: 1. 在函数 generateVertices 中,数组 verticesColors[] 的下标没有被正确设置,应该是 verticesColors[i]。 2. 在函数 setup 中,第二个 glEnableClientState(GL_COLOR_ARRAY) 应该是 glEnableClientState(GL_COLOR_ARRAY);。 3. 在函数 setup 中,第一个 glVertexPointer 函数应该是 glColorPointer。 4. 在函数 drawScene 中,应该使用 glDrawArrays(GL_POLYGON, 0, numVertices) 来绘制圆形。 修改后的代码如下:

使用OpenGL进行三维地形动态显示程序设计的代码,目的要求:(1) 地形高程的随机生成(2) 地形平滑技术

好的,以下是使用OpenGL进行三维地形动态显示程序设计的代码,实现地形高程的随机生成和平滑技术: 注意:以下代码仅供参考,可能需要针对您的具体应用做出修改。 ```c++ #include <iostream> #include <vector> #include <random> #include <cmath> // OpenGL头文件 #include <GL/glut.h> // 地形网格的长宽 #define GRID_SIZE 100 // 地形高度图存储数组 std::vector<std::vector<float>> terrain(GRID_SIZE, std::vector<float>(GRID_SIZE)); // 随机数引擎 std::default_random_engine generator; // 均值滤波 float smooth(std::vector<std::vector<float>> &src, int x, int y, int size) { float sum = 0.0f; int count = 0; for (int i = x - size; i <= x + size; i++) { for (int j = y - size; j <= y + size; j++) { if (i >= 0 && i < GRID_SIZE && j >= 0 && j < GRID_SIZE) { sum += src[i][j]; count++; } } } return sum / count; } // Diamond-Square算法生成高程图 void diamondSquare(int left, int top, int right, int bottom, float range) { if (left == right || top == bottom) { return; } int centerX = (left + right) / 2; int centerY = (top + bottom) / 2; float randValue = std::uniform_real_distribution<float>(-range, range)(generator); terrain[centerX][centerY] = (terrain[left][top] + terrain[left][bottom] + terrain[right][top] + terrain[right][bottom]) / 4.0f + randValue; diamondSquare(left, top, centerX, centerY, range / 2.0f); diamondSquare(centerX, top, right, centerY, range / 2.0f); diamondSquare(left, centerY, centerX, bottom, range / 2.0f); diamondSquare(centerX, centerY, right, bottom, range / 2.0f); } // 地形高度图生成函数 void generateTerrain() { // 生成四个角的高程值 terrain[0][0] = std::uniform_real_distribution<float>(-1.0f, 1.0f)(generator); terrain[0][GRID_SIZE - 1] = std::uniform_real_distribution<float>(-1.0f, 1.0f)(generator); terrain[GRID_SIZE - 1][0] = std::uniform_real_distribution<float>(-1.0f, 1.0f)(generator); terrain[GRID_SIZE - 1][GRID_SIZE - 1] = std::uniform_real_distribution<float>(-1.0f, 1.0f)(generator); float range = 1.0f; while (range > 0.1f) { diamondSquare(0, 0, GRID_SIZE - 1, GRID_SIZE - 1, range); range /= 2.0f; } // 均值滤波 for (int i = 0; i < GRID_SIZE; i++) { for (int j = 0; j < GRID_SIZE; j++) { terrain[i][j] = smooth(terrain, i, j, 1); } } } // 显示回调函数 void display() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // 视角位置 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); // 绘制地形 glBegin(GL_TRIANGLES); for (int i = 0; i < GRID_SIZE - 1; i++) { for (int j = 0; j < GRID_SIZE - 1; j++) { // 顶点1 glColor3f((terrain[i][j] + 1.0f) / 2.0f, (terrain[i][j] + 1.0f) / 2.0f, (terrain[i][j] + 1.0f) / 2.0f); glVertex3f(i, terrain[i][j], j); // 顶点2 glColor3f((terrain[i+1][j] + 1.0f) / 2.0f, (terrain[i+1][j] + 1.0f) / 2.0f, (terrain[i+1][j] + 1.0f) / 2.0f); glVertex3f(i+1, terrain[i+1][j], j); // 顶点3 glColor3f((terrain[i][j+1] + 1.0f) / 2.0f, (terrain[i][j+1] + 1.0f) / 2.0f, (terrain[i][j+1] + 1.0f) / 2.0f); glVertex3f(i, terrain[i][j+1], j+1); // 顶点2 glColor3f((terrain[i+1][j] + 1.0f) / 2.0f, (terrain[i+1][j] + 1.0f) / 2.0f, (terrain[i+1][j] + 1.0f) / 2.0f); glVertex3f(i+1, terrain[i+1][j], j); // 顶点3 glColor3f((terrain[i][j+1] + 1.0f) / 2.0f, (terrain[i][j+1] + 1.0f) / 2.0f, (terrain[i][j+1] + 1.0f) / 2.0f); glVertex3f(i, terrain[i][j+1], j+1); // 顶点4 glColor3f((terrain[i+1][j+1] + 1.0f) / 2.0f, (terrain[i+1][j+1] + 1.0f) / 2.0f, (terrain[i+1][j+1] + 1.0f) / 2.0f); glVertex3f(i+1, terrain[i+1][j+1], j+1); } } glEnd(); glutSwapBuffers(); } // 窗口大小改变回调函数 void reshape(int width, int height) { glViewport(0, 0, width, height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(60.0, (GLfloat)width / (GLfloat)height, 1.0, 100.0); } // 主函数 int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH); glutInitWindowSize(800, 600); glutCreateWindow("Terrain"); generateTerrain(); glutDisplayFunc(display); glutReshapeFunc(reshape); glEnable(GL_DEPTH_TEST); glutMainLoop(); return 0; } ``` 以上代码使用Diamond-Square算法生成地形高程图,并使用均值滤波进行平滑处理。同时使用OpenGL绘制地形。颜色映射可以通过调整glColor3f函数中的参数来实现。

相关推荐

最新推荐

recommend-type

Google已经推出了Google VR SDK,

VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
recommend-type

基于51单片机的自动循迹、蓝牙遥控,超声波避障的智能小车+全部资料+详细文档(高分项目).zip

【资源说明】 基于51单片机的自动循迹、蓝牙遥控,超声波避障的智能小车+全部资料+详细文档(高分项目).zip基于51单片机的自动循迹、蓝牙遥控,超声波避障的智能小车+全部资料+详细文档(高分项目).zip基于51单片机的自动循迹、蓝牙遥控,超声波避障的智能小车+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

整合了在Unity开发过程中自主开发的实用代码,如摄影机操作,角色操作,控制器交互等。涵盖3D游戏到VR领域。.zip

VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
recommend-type

基于GPT-SoVITS的视频剪辑快捷配音工具.zip

基于GPT-SoVITS的视频剪辑快捷配音工具 GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语法、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方法和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。
recommend-type

node-v4.3.0-linux-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。