pso-优化svm算法 python代码

时间: 2023-10-16 07:02:58 浏览: 41
PSO(粒子群优化)算法是一种常用于寻找全局最优解的优化算法。SVM(支持向量机)是一种常用的机器学习算法,用于分类和回归任务。在Python中,我们可以使用优化库比如PySwarm来实现PSO算法,并使用Scikit-learn库中的SVM模型来得到优化后的结果。 首先,导入所需的库: ```python import numpy as np from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import pyswarms as ps ``` 接下来,定义一个函数来计算SVM模型的准确度: ```python def svm_accuracy(params, X_train, y_train, X_test, y_test): c = params[0] gamma = params[1] model = SVC(C=c, gamma=gamma) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) return -accuracy ``` 然后,定义一个函数作为PSO的目标函数,用于最小化SVM模型的准确度: ```python def pso_optimize_svm(X_train, y_train, X_test, y_test): bounds = (np.array([1, 0.001]), np.array([100, 100])) options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2, options=options, bounds=bounds) best_params, _ = optimizer.optimize(svm_accuracy, iters=100, verbose=False, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test) return best_params ``` 最后,使用数据集进行测试: ```python # 假设有一个数据集 X 和标签 y X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) best_params = pso_optimize_svm(X_train, y_train, X_test, y_test) print("最优参数:C={}, gamma={}".format(best_params[0], best_params[1])) ``` 以上就是使用PSO优化SVM算法的Python代码的实现。通过PSO优化,我们可以找到在给定数据集上SVM模型的最优参数,从而提高分类的准确度。

相关推荐

以下是使用PSO-SVM进行多分类的Python代码示例: python import numpy as np from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 生成多分类数据集 X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, n_classes=3, random_state=42) # 定义PSO-SVM分类器 class PSOSVM: def __init__(self, n_particles=10, max_iter=100, c1=2, c2=2, w=0.7): self.n_particles = n_particles self.max_iter = max_iter self.c1 = c1 self.c2 = c2 self.w = w def fit(self, X, y): # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 初始化粒子群 particles = np.random.uniform(low=-1, high=1, size=(self.n_particles, X.shape\[1\] + 1)) velocities = np.zeros_like(particles) best_positions = particles.copy() best_scores = np.zeros(self.n_particles) # 迭代更新粒子群 for _ in range(self.max_iter): for i in range(self.n_particles): # 计算粒子的适应度得分 svm = SVC(C=10 ** particles\[i\]\[-1\]) svm.fit(X_scaled, y) y_pred = svm.predict(X_scaled) score = accuracy_score(y, y_pred) # 更新粒子的最佳位置和最佳得分 if score > best_scores\[i\]: best_positions\[i\] = particles\[i\].copy() best_scores\[i\] = score # 更新粒子的速度和位置 for i in range(self.n_particles): r1 = np.random.rand(X.shape\[1\] + 1) r2 = np.random.rand(X.shape\[1\] + 1) velocities\[i\] = self.w * velocities\[i\] + self.c1 * r1 * (best_positions\[i\] - particles\[i\]) + self.c2 * r2 * (best_positions.mean(axis=0) - particles\[i\]) particles\[i\] += velocities\[i\] # 找到最佳粒子的位置 best_particle = particles\[np.argmax(best_scores)\] # 根据最佳粒子的位置训练最终的SVM分类器 svm = SVC(C=10 ** best_particle\[-1\]) svm.fit(X_scaled, y) self.svm = svm self.scaler = scaler def predict(self, X): X_scaled = self.scaler.transform(X) return self.svm.predict(X_scaled) # 使用PSO-SVM进行多分类 pso_svm = PSOSVM(n_particles=10, max_iter=100, c1=2, c2=2, w=0.7) pso_svm.fit(X, y) y_pred = pso_svm.predict(X) # 计算准确率 accuracy = accuracy_score(y, y_pred) print("Accuracy:", accuracy) 请注意,这只是一个示例代码,具体的PSO-SVM实现可能会有所不同。你可以根据自己的需求进行调整和修改。 #### 引用[.reference_title] - *1* *2* *3* [基于Python的SVM算法深入研究](https://blog.csdn.net/weixin_45137708/article/details/106340493)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
以下是使用粒子群优化算法实现的SVM多分类Python代码: python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.svm import SVC # 定义粒子群优化算法 class PSO: def __init__(self, num_particles, max_iter, c1, c2, w, dim): self.num_particles = num_particles self.max_iter = max_iter self.c1 = c1 self.c2 = c2 self.w = w self.dim = dim self.x = np.random.uniform(low=-1, high=1, size=(num_particles, dim)) self.v = np.random.uniform(low=-1, high=1, size=(num_particles, dim)) self.pbest_x = self.x.copy() self.pbest_y = np.zeros(num_particles) self.gbest_x = np.zeros(dim) self.gbest_y = float('inf') def update(self, X_train, y_train): clf = SVC(kernel='linear') for i in range(self.num_particles): # 训练支持向量机模型 clf.fit(X_train, y_train) # 使用支持向量机模型预测 y_pred = clf.predict(X_train) # 计算分类准确率 score = accuracy_score(y_train, y_pred) # 更新个体最优解 if score > self.pbest_y[i]: self.pbest_x[i] = self.x[i].copy() self.pbest_y[i] = score # 更新全局最优解 if score > self.gbest_y: self.gbest_x = self.x[i].copy() self.gbest_y = score # 更新粒子速度和位置 r1 = np.random.rand(self.dim) r2 = np.random.rand(self.dim) self.v[i] = self.w * self.v[i] + self.c1 * r1 * (self.pbest_x[i] - self.x[i]) + self.c2 * r2 * (self.gbest_x - self.x[i]) self.x[i] = self.x[i] + self.v[i] def fit(self, X_train, y_train): for i in range(self.max_iter): self.update(X_train, y_train) # 加载鸢尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义PSO算法参数 num_particles = 30 max_iter = 100 c1 = 2 c2 = 2 w = 0.8 dim = X_train.shape[1] # 初始化PSO算法 pso = PSO(num_particles, max_iter, c1, c2, w, dim) # 训练PSO-SVM分类器 pso.fit(X_train, y_train) # 使用最优参数训练支持向量机模型 clf = SVC(kernel='linear') clf.fit(X_train, y_train) # 在测试集上测试模型性能 y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) 在上述代码中,我们首先定义了一个粒子群优化算法类 PSO,其中 update 方法用于更新粒子速度和位置,并在每次更新后训练支持向量机模型并计算分类准确率。在 fit 方法中,我们多次调用 update 方法来寻找最优解。最后,我们使用最优参数训练支持向量机模型,并在测试集上测试模型性能。 需要注意的是,这里使用的是线性核函数的支持向量机模型。如果需要使用其他核函数,可以在 SVC 的构造函数中设置。另外,由于粒子群优化算法通常是一种全局优化方法,所以在实际应用中需要考虑算法的收敛速度和计算复杂度等问题。
首先需要导入所需的库: python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import accuracy_score, confusion_matrix, classification_report 然后加载数据集并进行数据预处理: python # 加载数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 数据预处理 scaler = StandardScaler() X = scaler.fit_transform(X) 接下来,定义PSO算法的类: python class PSO: def __init__(self, n_particles, max_iter, c1, c2, w, dim, lb, ub): self.n_particles = n_particles self.max_iter = max_iter self.c1 = c1 self.c2 = c2 self.w = w self.dim = dim self.lb = lb self.ub = ub self.g_best_fitness = np.inf self.g_best_pos = None self.particles_fitness = np.empty(self.n_particles) self.particles_pos = np.random.uniform(low=self.lb, high=self.ub, size=(self.n_particles, self.dim)) self.particles_vel = np.zeros((self.n_particles, self.dim)) def optimize(self, function): for i in range(self.max_iter): for j in range(self.n_particles): fitness = function(self.particles_pos[j]) if fitness < self.particles_fitness[j]: self.particles_fitness[j] = fitness if fitness < self.g_best_fitness: self.g_best_fitness = fitness self.g_best_pos = self.particles_pos[j] r1 = np.random.uniform(size=self.dim) r2 = np.random.uniform(size=self.dim) self.particles_vel[j] = self.w * self.particles_vel[j] + self.c1 * r1 * (self.particles_pos[j] - self.particles_pos[j]) + self.c2 * r2 * (self.g_best_pos - self.particles_pos[j]) self.particles_pos[j] = np.clip(self.particles_pos[j] + self.particles_vel[j], self.lb, self.ub) return self.g_best_pos 接下来,定义适应度函数和SVM分类器: python def fitness_function(params): C = params[0] gamma = params[1] kernel = params[2] clf = SVC(C=C, gamma=gamma, kernel=kernel) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) acc = accuracy_score(y_test, y_pred) return 1 - acc # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义搜索范围 lb = [1e-3, 1e-3, 'linear'] ub = [100, 10, 'rbf'] dim = 3 # 使用PSO算法进行参数优化 pso = PSO(n_particles=20, max_iter=50, c1=2, c2=2, w=0.7, dim=dim, lb=lb, ub=ub) params = pso.optimize(fitness_function) # 使用优化后的参数训练SVM分类器 C = params[0] gamma = params[1] kernel = params[2] clf = SVC(C=C, gamma=gamma, kernel=kernel) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 输出评价指标 print('Accuracy:', accuracy_score(y_test, y_pred)) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred)) 这就是PSO-SVM多分类python并输出参数以及评价指标的实现过程。
粒子群优化(Particle Swarm Optimization, PSO)算法是一种基于群体智能的优化算法,模拟了鸟群觅食行为,通过粒子的位置和速度迭代搜索最优解。 支持向量机(Support Vector Machine, SVM)是一种二分类的机器学习算法,通过找到一个最优超平面来进行分类。它的优点包括可以解决高维问题、泛化能力强等。 在Python中,可以结合粒子群优化算法和SVM算法来进行分类任务。具体步骤如下: 1. 设置PSO的参数,包括群体大小、迭代次数、惯性权重等。 2. 初始化粒子群的位置和速度,并随机生成SVM参数。 3. 计算每个粒子的适应度,通过SVM算法对训练数据进行分类,并计算误差或准确率作为适应度。 4. 更新粒子的速度和位置,根据惯性权重、个体最优和全局最优来更新速度和位置。 5. 对更新后的粒子群计算适应度。 6. 如果满足终止条件(如达到最大迭代次数或适应度达到预设阈值),则停止迭代,否则返回第4步。 7. 从所有粒子中选择适应度最好的粒子,即全局最优解。 8. 使用全局最优的SVM参数进行测试数据的分类。 PSO算法的优点是能够在较短时间内搜索到较好的解,但它可能会陷入局部最优。因此,需要根据实际情况调整算法参数并进行多次实验,以得到更好的结果。 以上是粒子群优化SVM算法在Python中的基本流程,可以根据具体问题进行适当的调整和优化。
交叉验证是一种常用的模型评估方法,用于评估机器学习模型的性能。PSO代表粒子群优化算法,而SVM代表支持向量机,是一种常用的分类算法。 在Python中进行PSO交叉验证SVM代码编写的步骤如下: 1. 导入所需的库:使用scikit-learn库中的SVC类实现SVM分类器,pyswarm库实现PSO算法,numpy库实现数值运算。 python from sklearn.svm import SVC import numpy as np import pyswarm 2. 定义PSO函数:PSO函数确定SVM的超参数,如C和gamma。根据指定的维数范围,定义搜索空间。 python def pso_func(params): C, gamma = params svm = SVC(kernel='rbf', C=10**C, gamma=10**gamma) svm.fit(x_train, y_train) accuracy = svm.score(x_val, y_val) return 1 - accuracy 3. 定义数据集:将数据集划分为训练集和验证集。 python x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=42) 4. 定义搜索空间范围:设置C和gamma的搜索范围。 python param_ranges = (slice(-1, 10, 1), slice(-10, 0, 1)) 5. 运行PSO算法:使用pyswarm库中的pso函数运行PSO算法,找出最优的C和gamma。 python best_params, _ = pyswarm.pso(pso_func, param_ranges[0].start, param_ranges[0].stop, param_ranges[1].start, param_ranges[1].stop, maxiter=50) 6. 输出最优参数:打印出找到的最优的C和gamma。 python best_C, best_gamma = best_params print("Best C: ", 10 ** best_C) print("Best gamma: ", 10 ** best_gamma) 以上就是使用PSO交叉验证SVM的Python代码,其中PSO算法通过逐步搜索找到最佳的超参数C和gamma,以实现最佳的SVM分类器性能评估。
以下是基于PSO算法的SVM代码实现(Python版本): python import numpy as np class PSO_SVM: def __init__(self, c1=1, c2=1, w=0.6, max_iter=100, num_particles=10, kernel='linear'): self.c1 = c1 self.c2 = c2 self.w = w self.max_iter = max_iter self.num_particles = num_particles self.kernel = kernel self.X = None self.y = None self.n_samples = None self.n_features = None self.alpha = None self.b = None self.particles_alpha = None self.particles_b = None self.particles_v_alpha = None self.particles_v_b = None self.particles_loss = None self.gbest_alpha = None self.gbest_b = None self.gbest_loss = float('inf') def fit(self, X, y): self.X = X self.y = y self.n_samples, self.n_features = X.shape self.alpha = np.zeros(self.n_samples) self.b = 0 self.particles_alpha = np.zeros((self.num_particles, self.n_samples)) self.particles_b = np.zeros(self.num_particles) self.particles_v_alpha = np.zeros((self.num_particles, self.n_samples)) self.particles_v_b = np.zeros(self.num_particles) self.particles_loss = np.zeros(self.num_particles) for i in range(self.num_particles): self.particles_alpha[i] = np.random.uniform(low=0, high=1, size=self.n_samples) self.particles_b[i] = np.random.uniform(low=0, high=1) self.particles_v_alpha[i] = np.zeros(self.n_samples) self.particles_v_b[i] = 0 self.particles_loss[i] = self.loss(self.particles_alpha[i], self.particles_b[i]) if self.particles_loss[i] < self.gbest_loss: self.gbest_alpha = self.particles_alpha[i] self.gbest_b = self.particles_b[i] self.gbest_loss = self.particles_loss[i] for _ in range(self.max_iter): for i in range(self.num_particles): r1 = np.random.uniform(low=0, high=1, size=self.n_samples) r2 = np.random.uniform(low=0, high=1) self.particles_v_alpha[i] = self.w * self.particles_v_alpha[i] \ + self.c1 * r1 * (self.particles_alpha[i] - self.gbest_alpha) \ + self.c2 * r2 * (self.particles_alpha[i] - self.alpha) self.particles_v_b[i] = self.w * self.particles_v_b[i] \ + self.c1 * r1 * (self.particles_b[i] - self.gbest_b) \ + self.c2 * r2 * (self.particles_b[i] - self.b) self.particles_alpha[i] = np.clip(self.particles_alpha[i] + self.particles_v_alpha[i], 0, 1) self.particles_b[i] += self.particles_v_b[i] self.particles_loss[i] = self.loss(self.particles_alpha[i], self.particles_b[i]) if self.particles_loss[i] < self.gbest_loss: self.gbest_alpha = self.particles_alpha[i] self.gbest_b = self.particles_b[i] self.gbest_loss = self.particles_loss[i] self.alpha = self.gbest_alpha self.b = self.gbest_b def predict(self, X_test): y_pred = np.zeros(len(X_test)) if self.kernel == 'linear': for i in range(len(X_test)): y_pred[i] = np.sign(np.dot(self.alpha * self.y, np.dot(self.X, X_test[i])) + self.b) return y_pred def loss(self, alpha, b): if self.kernel == 'linear': y_pred = np.dot(self.alpha * self.y, np.dot(self.X, self.X.T)) + b loss = np.sum(alpha) - 0.5 * np.sum((alpha * self.y)[:, None] * (self.y * y_pred)) return loss 其中,PSO算法的核心部分在fit方法中,其中r1和r2分别代表随机因子,particles_v_alpha和particles_v_b分别代表粒子的速度,particles_alpha和particles_b分别代表粒子的位置,self.gbest_alpha和self.gbest_b分别代表全局最优位置,self.particles_loss代表粒子的损失函数值。其中,损失函数的实现采用的是线性核函数。
以下是使用粒子群优化算法优化SVM多分类模型参数的示例代码。该代码使用scikit-learn库中的make_classification函数生成一个模拟数据集,并使用粒子群优化算法搜索SVM多分类模型的最优参数。 python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.svm import SVC from pyswarm import pso # 生成模拟数据集 X, y = make_classification(n_samples=1000, n_features=10, n_classes=5, n_informative=5, random_state=42) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义SVM多分类模型和目标函数 def svm_objective_function(params): C = params[0] gamma = params[1] clf = SVC(C=C, gamma=gamma, kernel='rbf') clf.fit(X_train, y_train) score = clf.score(X_test, y_test) return -score # 定义参数搜索空间 lb = [0.1, 0.001] ub = [10, 1] # 使用粒子群优化算法进行优化 xopt, fopt = pso(svm_objective_function, lb, ub) # 输出最优参数和最优得分 print('Best Parameters:', xopt) print('Best Score:', -fopt) 在以上代码中,首先生成一个模拟数据集,并将其划分为训练集和测试集。然后定义目标函数svm_objective_function,在目标函数中使用SVC类定义SVM多分类模型,并使用训练集训练模型,使用测试集计算模型在数据集上的性能得分,并将得分取负作为目标函数的返回值,因为粒子群优化算法是一个最小化目标函数的算法。最后使用pso函数进行粒子群优化算法的优化,并输出最优参数和最优得分。
PSO(粒子群优化算法)是一种基于自然界鸟群觅食行为的优化算法,可以用于解决各种优化问题。支持向量机(SVM)是一种常用的分类算法,通过构建超平面将不同类别的样本分割开来。 要使用PSO优化支持向量机的Python代码,首先需要导入相关的库和模块,例如以下代码示例: python import numpy as np from sklearn import svm from sklearn.datasets import make_classification from pyswarm import pso # 生成随机数据集 X, y = make_classification(n_samples=100, n_features=10) # 定义SVM的训练函数 def svm_train(params): C, gamma = params clf = svm.SVC(C=C, gamma=gamma) clf.fit(X, y) return clf.score(X, y) # 定义PSO的目标函数 def objective(params): return 1- svm_train(params) # 定义PSO的变量范围 lb = [0.1, 0.1] ub = [10, 10] # 使用PSO优化SVM参数 xopt, fopt = pso(objective, lb, ub) # 打印最优参数和最优结果 print("Optimal parameters: C={}, gamma={}".format(xopt[0], xopt[1])) print("Optimal result: {}".format(fopt)) 在上述代码中,首先使用make_classification函数生成一个随机的数据集。然后通过定义svm_train函数来训练和评估SVM模型,其中params为SVM的参数。接下来,定义objective函数作为PSO的目标函数,其返回值为SVM准确率与1之差。然后,定义PSO的参数搜索范围lb和ub,分别表示参数的下界和上界。最后,使用pso函数进行PSO优化,得到最优参数和最优结果。最后打印出最优参数和最优结果。 需要注意的是,上述代码中使用了pyswarm库来实现PSO算法,需要先安装该库。可以通过以下命令来安装: pip install pyswarm 这就是使用PSO优化支持向量机的Python代码的一个简单示例。
PSO-LSSVM是一种基于粒子群优化算法的支持向量机回归模型。它结合了粒子群优化算法和Least Squares Support Vector Machine(LSSVM)模型的回归预测能力。 以下是一个简单的PSO-LSSVM回归预测的代码示例: python import numpy as np from sklearn.svm import SVR from sklearn.metrics import mean_squared_error from pyswarms.single.global_best import GlobalBestPSO # 定义目标函数 def objective_func(params, x, y): c, gamma = params model = SVR(kernel='rbf', C=c, gamma=gamma) model.fit(x, y) y_pred = model.predict(x) mse = mean_squared_error(y, y_pred) return mse # 定义PSO-LSSVM回归预测模型 class PSOLSSVMRegressor: def __init__(self, n_particles, max_iter): self.n_particles = n_particles self.max_iter = max_iter self.optimizer = None self.model = None def fit(self, x, y): # 定义PSO优化器 self.optimizer = GlobalBestPSO(n_particles=self.n_particles, dimensions=2, options={"c1": 0.5, "c2": 0.3, "w": 0.6}) # 进行参数优化 cost_func = lambda params: objective_func(params, x, y) best_params = self.optimizer.optimize(cost_func, iters=self.max_iter) # 根据优化后的参数构建SVR模型 c, gamma = best_params self.model = SVR(kernel='rbf', C=c, gamma=gamma) self.model.fit(x, y) def predict(self, x_test): return self.model.predict(x_test) # 使用示例 if __name__ == '__main__': # 准备数据集 x_train = np.array([[1, 1], [2, 3], [4, 5], [6, 7]]) y_train = np.array([2, 3, 5, 7]) x_test = np.array([[3, 3], [5, 6]]) # 构建PSO-LSSVM回归模型 model = PSOLSSVMRegressor(n_particles=10, max_iter=100) model.fit(x_train, y_train) # 进行预测 y_pred = model.predict(x_test) print("预测结果:", y_pred) 以上就是一个基于粒子群优化算法的支持向量机回归(PSO-LSSVM)预测模型的简单代码示例。在示例代码中,首先定义了目标函数,然后构建了一个PSO-LSSVMRegressor类,其中包含了fit和predict方法用于训练和预测。在fit方法中,使用粒子群优化算法对LSSVM模型的参数进行优化,最后构建SVR模型进行回归预测。
抱歉,作为 AI 语言模型,我无法生成完整的代码,但我可以为您提供一些基本的思路和代码片段来实现 PSO-SVR。 在这里,我们将使用 Python 的 scikit-learn 库实现 PSO-SVR。 首先,我们需要导入所需的库:numpy、sklearn、pso以及SVR。 python import numpy as np from sklearn.svm import SVR from pso import PSO 然后,我们需要定义数据集和特征,这里我们使用 scikit-learn 的 make_regression 函数生成一个简单的线性数据集。 python X, y = make_regression(n_samples=100, n_features=10, random_state=42) 接下来,我们定义目标函数,即 PSO-SVR 中的适应度函数。 python def fitness_func(params): C, epsilon, gamma = params clf = SVR(C=C, epsilon=epsilon, gamma=gamma) clf.fit(X, y) mse = np.mean((clf.predict(X) - y) ** 2) return mse 然后,我们定义 PSO 算法中粒子的位置和速度的范围。 python bounds = [(1, 100), (0.01, 0.5), (0.1, 1)] 接着,我们定义 PSO 的参数及其值。这里我们设置了 20 个粒子、迭代次数为 100 次、惯性权重为 0.5、加速常数为 1 和学习因子为 2。 python n_particles = 20 n_iterations = 100 w = 0.5 c1 = 1 c2 = 1 s = 2 最后,我们使用 PSO 求解适应度函数的最小值。 python pso = PSO(n_particles=n_particles, bounds=bounds, fitness_func=fitness_func, w=w, c1=c1, c2=c2, s=s) best_position, best_fitness = pso.run(n_iterations) print("Best parameters:", best_position) print("Best fitness:", best_fitness) 通过以上代码,我们就可以得到 PSO-SVR 的最优参数和最小误差了。当然,这只是一个简单的示例,实际应用中还需要根据问题的具体情况进行调整和优化。

最新推荐

http协议接口及代码解析(超详细).docx

Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE。URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上的资源,而HTTP中的GET,POST,PUT,DELETE就对应着对这个资源的查,改,增,删4个操作。到这里,大家应该有个大概的了解了,GET一般用于获取/查询资源信息,而POST一般用于更新资源信息。 1.根据HTTP规范,GET用于信息获取,而且应该是安全的和幂等的。 2.根据HTTP规范,POST表示可能修改变服务器上的资源的请求。 (1).所谓安全的意味着该操作用于获取信息而非修改信息。换句话说,GET 请求一般不应产生副作用。就是说,它仅仅是获取资源信息,就像数据库查询一样,不会修改,增加数据,不会影响资源的状态.但在实际应用中,以上2条规定并没有这么严格。引用别人文章的例子:比如,新闻站点的头版不断更新。虽然第二次请求会返回不同的一批新闻,该操作仍然被认为是安全的和幂等的,因为它总是返回当前的新闻。从根本上说,如果目标是当用户打开一个链接时,他可以确信从自身的角度来看没有改变资源即可。

航班进出港管理系统.zip

① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SpringBoot ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、Springboot、Mybatis、Ajax、Vue等 最新计算机软件毕业设计选题大全 https://blog.csdn.net/weixin_45630258/article/details/135901374 摘 要 目 录 第1章 绪论 1.1选题动因 1.2背景与意义 第2章 相关技术介绍 2.1 MySQL数据库 2.2 Vue前端技术 2.3 B/S架构模式 2.4 ElementUI介绍 第3章 系统分析 3.1 可行性分析 3.1.1技术可行性 3.1.2经济可行性 3.1.3运行可行性 3.2 系统流程 3.2.1 操作信息流程 3.2.2 登录信息流程 3.2.3 删除信息流程 3.3 性能需求 第4章 系统设计 4.1系统整体结构 4.2系统功能设计 4.3数据库设计 第5章 系统的实现 5.1用户信息管理 5.2 图片素材管理 5.3视频素材管理 5.1公告信息管理 第6章 系统的测试 6.1软件测试 6.2测试环境 6.3测试测试用例 6.4测试结果

进制转换(2,8,10,16进制的数相互转换)

进制转换(2,8,10,16进制的数相互转换)

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况