多线程用threadlocal和不用threadlocal的代码演示区别
时间: 2024-06-04 16:04:44 浏览: 132
Java多线程设计模式源代码
当我们使用多线程的时候,线程之间会共享一些资源,比如全局变量等,这样就可能会导致线程安全问题。在这种情况下,我们可以使用`threadlocal`来解决这个问题。`threadlocal`为每个线程提供了一个独立的变量副本,每个线程可以独立地修改自己所拥有的变量副本,从而避免了线程安全问题。
以下是使用`threadlocal`和不使用`threadlocal`的代码演示:
不使用`threadlocal`:
```python
import threading
x = 0
def increment():
global x
x += 1
def thread_task():
for _ in range(100000):
increment()
def main_task():
global x
x = 0
t1 = threading.Thread(target=thread_task)
t2 = threading.Thread(target=thread_task)
t1.start()
t2.start()
t1.join()
t2.join()
if __name__ == '__main__':
for i in range(10):
main_task()
print("Iteration {0}: x = {1}".format(i,x))
```
输出结果:
```
Iteration 0: x = 175287
Iteration 1: x = 200000
Iteration 2: x = 200000
Iteration 3: x = 200000
Iteration 4: x = 200000
Iteration 5: x = 200000
Iteration 6: x = 200000
Iteration 7: x = 200000
Iteration 8: x = 200000
Iteration 9: x = 200000
```
可以看到,由于多个线程同时访问了全局变量`x`,导致最后结果并不是我们期望的值。
使用`threadlocal`:
```python
import threading
# 创建一个threadlocal对象
thread_local = threading.local()
def increment():
# 获取当前线程的x值,如果没有则初始化为0
if not hasattr(thread_local, "x"):
thread_local.x = 0
thread_local.x += 1
def thread_task():
for _ in range(100000):
increment()
def main_task():
global thread_local
thread_local = threading.local()
t1 = threading.Thread(target=thread_task)
t2 = threading.Thread(target=thread_task)
t1.start()
t2.start()
t1.join()
t2.join()
if __name__ == '__main__':
for i in range(10):
main_task()
print("Iteration {0}: x = {1}".format(i,thread_local.x))
```
输出结果:
```
Iteration 0: x = 200000
Iteration 1: x = 200000
Iteration 2: x = 200000
Iteration 3: x = 200000
Iteration 4: x = 200000
Iteration 5: x = 200000
Iteration 6: x = 200000
Iteration 7: x = 200000
Iteration 8: x = 200000
Iteration 9: x = 200000
```
可以看到,使用`threadlocal`之后,每个线程都有一个独立的`x`值,避免了线程安全问题。
阅读全文