transformer implementation
时间: 2023-10-16 17:12:06 浏览: 147
您可以参考以下步骤来实现Transformer模型:
1. 定义输入和输出的嵌入层
2. 定义Transformer的编码器和解码器
3. 定义Transformer的注意力机制
4. 定义Transformer的前向传播函数
以下是一个简单的Transformer实现的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, input_vocab_size, output_vocab_size, d_model, nhead, num_layers):
super(Transformer, self).__init__()
self.d_model = d_model
self.nhead = nhead
self.num_layers = num_layers
self.encoder_embedding = nn.Embedding(input_vocab_size, d_model)
self.decoder_embedding = nn.Embedding(output_vocab_size, d_model)
self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead), num_layers=num_layers)
self.decoder = nn.TransformerDecoder(nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead), num_layers=num_layers)
self.fc = nn.Linear(d_model, output_vocab_size)
def forward(self, src, tgt):
src_embedded = self.encoder_embedding(src)
tgt_embedded = self.decoder_embedding(tgt)
src_mask = self.generate_square_subsequent_mask(src.shape[0])
tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
memory = self.encoder(src_embedded.transpose(0, 1), src_key_padding_mask=None, src_mask=src_mask)
output = self.decoder(tgt_embedded.transpose(0, 1), memory, tgt_mask=tgt_mask)
output = self.fc(output.transpose(0, 1))
return output
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
```
阅读全文