IRT的GRM模型数据模拟代码(R语言)
时间: 2024-10-29 11:09:45 浏览: 6
IRT:用于分析 IRT 模型的函数
在R语言中,我们可以使用`distributions`和`optim`等包来模拟IRT的GRM(Graded Response Model)。以下是一个简单的例子:
首先,安装必要的包:
```r
install.packages(c("psych", "MASS"))
library(psych)
library(MASS)
```
然后,定义GRM函数:
```r
grm_function <- function(theta, difficulty, response) {
dnorm(response, mean = theta - difficulty, sd = sqrt(difficulty))
}
```
接下来,创建一些模拟数据:
```r
set.seed(123) # 设置随机数种子保证复现性
num_students <- 50
theta_range <- seq(from = 0, to = 4, length.out = num_students)
true_theta <- runif(num_students, min = theta_range[1], max = theta_range[length])
# 设定难度级别
difficulty_levels <- c(1, 2, 3)
responses <- matrix(NA, nrow = num_students, ncol = length(difficulty_levels))
for (i in 1:length(difficulty_levels)) {
responses[, i] <- rbinom(num_students, 1, prob = grm_function(true_theta, difficulty_levels[i]))
}
```
最后,使用优化函数对数据进行拟合:
```r
guess_params <- cbind(true_theta, difficulty_levels)
fit <- optim(guess_params, grm_function, method = "L-BFGS-B", hessian = TRUE,
lower = c(-Inf, 0), upper = c(Inf, Inf),
args = list(responses))
estimated_params <- coef(fit)
cat("Simulated data and estimated parameters:\n")
cat(paste0("True θ: ", true_theta, "\n"))
cat(paste0("Estimated θ: ", estimated_params[,"x"], "\n"))
cat(paste0("Difficulty levels: ", difficulty_levels, "\n"))
cat(paste0("Estimated δ: ", estimated_params[,"y"], "\n"))
```
阅读全文