point_wise_feed_forward_network(d_model, dff)
时间: 2023-08-13 07:07:55 浏览: 206
point_wise_feed_forward_network(d_model, dff) 是一个函数,它表示点式前馈网络的结构。这个函数接受两个参数:
1. d_model:表示输入数据的维度或特征数。在点式前馈网络中,输入的每个元素都具有 d_model 维度的特征表示。
2. dff:表示点式前馈网络中隐藏层的维度或神经元数。隐藏层是全连接层,它负责对输入数据进行线性变换和非线性映射。
点式前馈网络的结构如下:
1. 输入数据通过一个全连接层,其中包括一个线性变换 W1 和一个激活函数(通常是ReLU)。
2. 线性变换将输入数据从 d_model 维度映射到 dff 维度。
3. 激活函数对映射后的数据进行非线性变换。
4. 最后,映射后的数据通过另一个全连接层,其中包括一个线性变换 W2 和一个激活函数。
在点式前馈网络中,这两个全连接层是独立地应用于输入数据的每个元素,即逐元素地进行非线性映射。这样可以保留输入数据的顺序信息,并进行有针对性的特征提取和转换。
总结来说,point_wise_feed_forward_network(d_model, dff) 是一个用于点式前馈网络的函数,它接受输入数据的维度和隐藏层的维度作为参数,用于构建点式前馈网络的结构。
相关问题
decoder的key_pos是如何使用,能否提供代码例子
在ChitGPT中,Decoder的key_pos是通过以下方式使用的:
首先,我们需要在Decoder的初始化函数中定义key_pos:
```python
class Decoder(nn.Module):
def __init__(self, num_layers, d_model, num_heads, dff, vocab_size, max_seq_len, rate=0.1):
super(Decoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = positional_encoding(max_seq_len, d_model)
self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)]
self.dropout = nn.Dropout(rate)
self.final_layer_norm = nn.LayerNorm(d_model)
# Define key_pos
self.key_pos = torch.arange(0, max_seq_len, dtype=torch.long).unsqueeze(0)
def forward(self, x, enc_output, look_ahead_mask, padding_mask):
seq_len = x.size(1)
attention_weights = {}
# Adding embedding and position encoding.
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
x *= torch.sqrt(torch.FloatTensor([self.d_model])).to(x.device)
x += self.pos_encoding[:, :seq_len, :]
# Applying dropout to the input of the decoder.
x = self.dropout(x)
for i in range(self.num_layers):
x, block1, block2 = self.dec_layers[i](x, enc_output, look_ahead_mask, padding_mask)
# Save attention weights
attention_weights[f'decoder_layer{i+1}_block1'] = block1
attention_weights[f'decoder_layer{i+1}_block2'] = block2
# Applying a final layer normalization for decoder output.
x = self.final_layer_norm(x)
return x, attention_weights
```
然后,在DecoderLayer中,我们可以使用key_pos来计算注意力分数:
```python
class DecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
self.layer_norm1 = nn.LayerNorm(d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
self.layer_norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(rate)
self.dropout2 = nn.Dropout(rate)
self.dropout3 = nn.Dropout(rate)
def forward(self, x, enc_output, look_ahead_mask, padding_mask):
# Multi-head attention layer with masking for decoder self-attention
attn1, block1 = self.mha1(x, x, x, look_ahead_mask)
attn1 = self.dropout1(attn1)
out1 = self.layer_norm1(attn1 + x)
# Multi-head attention layer with padding masking for encoder-decoder attention
key_pos = self.mha2.decoder_key_pos.unsqueeze(0)
attn2, block2 = self.mha2(out1, enc_output, enc_output, padding_mask, key_pos=key_pos)
attn2 = self.dropout2(attn2)
out2 = self.layer_norm2(attn2 + out1)
# Point wise feed forward network
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output)
out3 = self.layer_norm3(ffn_output + out2)
return out3, block1, block2
```
在这个例子中,我们使用 `self.mha2` 来计算Decoder与Encoder之间的注意力,其中 `key_pos` 是 `self.mha2` 中的一个参数,它被设置为 `self.mha2.decoder_key_pos.unsqueeze(0)`,这将 `key_pos` 转换为一个形状为 `(1, max_seq_len)` 的张量,从而与encoder输出的形状相同。在计算注意力分数时,`key_pos` 用于查找encoder输出中每个位置的位置编码,以便在进行注意力计算时使用。
阅读全文