svm支持向量机python框架
时间: 2023-10-10 20:13:47 浏览: 79
你可以使用Python中的scikit-learn库来实现支持向量机(SVM)算法,并结合其他库来处理图片数据。以下是一个基本的示例代码,演示如何读取图片并使用SVM模型进行训练和预测:
```python
import os
import numpy as np
from PIL import Image
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 1. 读取图像数据
def load_images(folder_path):
images = []
labels = []
for filename in os.listdir(folder_path):
if filename.endswith('.jpg'): # 假设图片格式为jpg
img = Image.open(os.path.join(folder_path, filename))
img = img.resize((64, 64)) # 调整图片大小为合适的尺寸
image_data = np.array(img).flatten() # 将图片转换为一维数组
images.append(image_data)
labels.append(filename.split('.')[0]) # 假设文件名为"类别.后缀"
return np.array(images), np.array(labels)
# 2. 加载训练集和测试集
train_folder = 'path_to_train_folder' # 替换为训练集文件夹的路径
test_folder = 'path_to_test_folder' # 替换为测试集文件夹的路径
X_train, y_train = load_images(train_folder)
X_test, y_test = load_images(test_folder)
# 3. 创建SVM分类器并训练模型
svm_model = svm.SVC()
svm_model.fit(X_train, y_train)
# 4. 预测并计算准确率
y_pred = svm_model.
阅读全文