pix2pix GAN 用于low dose ct denoising的代码
时间: 2024-04-12 11:30:41 浏览: 126
以下是使用pix2pix GAN进行低剂量CT去噪的示例代码:
```python
import tensorflow as tf
import tensorflow_addons as tfa
import os
# 定义生成器模型
def generator():
inputs = tf.keras.layers.Input(shape=[None, None, 1])
# 编码器
down_stack = [
downsample(64, 4, apply_batchnorm=False), # (batch_size, 128, 128, 64)
downsample(128, 4), # (batch_size, 64, 64, 128)
downsample(256, 4), # (batch_size, 32, 32, 256)
downsample(512, 4), # (batch_size, 16, 16, 512)
downsample(512, 4), # (batch_size, 8, 8, 512)
downsample(512, 4), # (batch_size, 4, 4, 512)
downsample(512, 4), # (batch_size, 2, 2, 512)
downsample(512, 4), # (batch_size, 1, 1, 512)
]
up_stack = [
upsample(512, 4, apply_dropout=True), # (batch_size, 2, 2, 1024)
upsample(512, 4, apply_dropout=True), # (batch_size, 4, 4, 1024)
upsample(512, 4, apply_dropout=True), # (batch_size, 8, 8, 1024)
upsample(512, 4), # (batch_size, 16, 16, 1024)
upsample(256, 4), # (batch_size, 32, 32, 512)
upsample(128, 4), # (batch_size, 64, 64, 256)
upsample(64, 4), # (batch_size, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
strides=2,
padding='same',
kernel_initializer=initializer) # (batch_size, 256, 256, 3)
x = inputs
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
# 定义判别器模型
def discriminator():
initializer = tf.random_normal_initializer(0., 0.02)
inp = tf.keras.layers.Input(shape=[None, None, 1], name='input_image')
tar = tf.keras.layers.Input(shape=[None, None, 1], name='target_image')
x = tf.keras.layers.concatenate([inp, tar]) # (batch_size, 256, 256, channels*2)
down1 = downsample(64, 4, False)(x) # (batch_size, 128, 128, 64)
down2 = downsample(128, 4)(down1) # (batch_size, 64, 64, 128)
down3 = downsample(256, 4)(down2) # (batch_size, 32, 32, 256)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (batch_size, 34, 34, 256)
conv = tf.keras.layers.Conv2D(512, 4, strides=1,
kernel_initializer=initializer,
use_bias=False)(zero_pad1) # (batch_size, 31, 31, 512)
batchnorm1 = tfa.layers.InstanceNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (batch_size, 33, 33, 512)
last = tf.keras.layers.Conv2D(1, 4, strides=1,
kernel_initializer=initializer)(zero_pad2) # (batch_size, 30, 30, 1)
return tf.keras.Model(inputs=[inp, tar], outputs=last)
# 定义下采样函数
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
kernel_initializer=initializer, use_bias=False))
if apply_batchnorm:
result.add(tfa.layers.InstanceNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
# 定义上采样函数
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
result.add(tfa.layers.InstanceNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
# 定义损失函数
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def generator_loss(disc_generated_output, gen_output, target):
gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
total_gen_loss = gan_loss + (LAMBDA * l1_loss)
return total_gen_loss, gan_loss, l1_loss
def discriminator_loss(disc_real_output, disc_generated_output):
real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)
total_disc_loss = real_loss + generated_loss
return total_disc_loss
# 定义优化器
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
# 定义检查点
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator(),
discriminator=discriminator())
# 定义训练循环
@tf.function
def train_step(input_image, target, step):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator()(input_image, training=True)
disc_real_output = discriminator()([input_image, target], training=True)
disc_generated_output = discriminator()([input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
disc_loss = discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss,
generator().trainable_variables)
discriminator_gradients = disc_tape.gradient(disc_loss,
discriminator().trainable_variables)
generator_optimizer.apply_gradients(zip(generator_gradients,
generator().trainable_variables))
discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
discriminator().trainable_variables))
if step % 100 == 0:
print('Step {}, Generator Loss: {}, Discriminator Loss: {}'.format(step, gen_total_loss, disc_loss))
# 训练模型
def fit(train_ds, epochs, test_ds):
for epoch in range(epochs):
for input_image, target in train_ds:
train_step(input_image, target, step)
if (epoch + 1) % 10 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
print('Epoch {}, Loss: {}'.format(epoch, total_loss))
# 加载数据集
def load_data():
# 加载训练数据和测试数据
train_dataset = ...
test_dataset = ...
return train_dataset, test_dataset
# 设置超参数
OUTPUT_CHANNELS = 1
LAMBDA = 100
# 加载数据集
train_dataset, test_dataset = load_data()
# 训练模型
fit(train_dataset, epochs=150, test_ds=test_dataset)
```
请注意,上述代码只是一个示例,你需要根据你的数据集和需求进行适当的调整和修改。此外,为了完整运行代码,你还需要实现`load_data()`函数来加载训练和测试数据集,并根据你的需求进行适当的预处理。
阅读全文