# [USACO12FEB] Overplanting S ## 题目描述 Farmer John has purchased a new machine that is capable of planting grass within any rectangular region of his farm that is "axially aligned" (i.e., with vertical and horizontal sides). Unfortunately, the machine malfunctions one day and plants grass in not one, but N (1 <= N <= 1000) different rectangular regions, some of which may even overlap. Given the rectangular regions planted with grass, please help FJ compute the total area in his farm that is now covered with grass. 在一个笛卡尔平面坐标系里(则X轴向右是正方向,Y轴向上是正方向),有N($1<=N<=1000$)个矩形,第i个矩形的左上角坐标是(x1, y1),右下角坐标是(x2,y2)。问这N个矩形所覆盖的面积是多少?注意:被重复覆盖的区域的面积只算一次。 ## 输入格式 第一行,一个整数N。 ($1<=N<=1000$)。 接下来有N行,每行描述一个矩形的信息,分别是矩形的x1、y1、x2、y2。 其中 $-10^8<=x1,y1,x2,y2<=10^8$。 ## 输出格式 一个整数,被N个矩形覆盖的区域的面积。 ## 样例 #1 ### 样例输入 #1 ``` 2 0 5 4 1 2 4 6 2 ``` ### 样例输出 #1 ``` 20 ```

时间: 2024-04-18 09:24:13 浏览: 131
这是一个计算矩形覆盖面积的问题。题目给出了N个矩形的坐标信息,需要计算这些矩形的覆盖面积。 算法思路如下: 1. 创建两个集合,分别保存矩形的x坐标和y坐标。 2. 遍历每个矩形,将矩形的x坐标和y坐标添加到对应的集合中。 3. 对x坐标和y坐标进行排序。 4. 遍历排序后的x坐标和y坐标,计算相邻两个坐标之差,并累加到总面积中。 具体实现可以参考以下代码:
相关问题

[Usaco2007 Feb]Cow Party

### 回答1: 题目描述 有N头奶牛,它们在M个牛棚之间相互转移。每个牛棚里有一些奶牛,每分钟可以容纳一头奶牛。一头奶牛从一个牛棚走到另一个牛棚需要一分钟的时间。现在,这些奶牛要开一个牛派对,它们要在同一时间到达同一个牛棚,所以它们需要在某个牛棚等待一段时间。你需要计算最小的等待时间,使得所有奶牛都能够在同一时间到达同一个牛棚。 输入格式 第一行包含三个整数N,M,X。 接下来M行,每行包含三个整数a,b,t,表示牛棚a和牛棚b之间有一条双向边,需要t分钟才能通过。 输出格式 输出一个整数,表示最小等待时间。 数据范围 1≤N≤500 1≤M≤10000 1≤X≤N 1≤a,b≤N 1≤t≤1000 输入样例#1 3 3 1 1 2 5 2 3 5 1 3 10 输出样例#1 5 输入样例#2 4 5 4 1 2 10 2 3 10 3 4 10 4 1 10 1 3 20 输出样例#2 30 算法1 (最短路) $O(N^3)$ Dijkstra算法 Dijkstra(迪杰斯特拉)算法是由荷兰计算机科学家狄克斯特拉于1956年发明的,因此又叫狄克斯特拉算法。 Dijkstra算法是一种贪心算法,用于求解一个节点到其他所有节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。 具体做法是:设立一个数组dis来保存源点到各个顶点的最短距离和一个数组book[i]来记录一个顶点是否已经在队列中。 初始时,原点s的路径权重被赋为0 (dis[s] = 0)。若对于顶点s存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,所有顶点并不属于任何已知最短路径所包含的顶点集合,因此都被标记为未知最短路径长度。当算法结束时,dis[v]中存储的便是源点s到顶点v的最短路径,或者如果从s无法到达v,则值为INF。 Dijkstra算法流程: 算法流程: 1. 将所有顶点分为两部分:已知最短路的顶点集合P和未知最短路的顶点集合Q。 2. 初始时,顶点集合P中只有源点s一个元素,以源点s为起点向外扩展。 3. 每次从顶点集合Q中选取一个顶点u(u的dist最小),并加入到顶点集合P中,同时以u为中心进行扩展。 4. 重复步骤3,直到顶点集合Q为空或者终点被加入到顶点集合P中。 5. 算法结束,最短路径保存在dis数组中。 时间复杂度 Dijkstra算法的时间复杂度为O(N^2)。由于N较小,因此可以通过本题。 参考文献 Dijkstra算法讲解 C++ 代码 算法2 (最短路) $O(N^2)$ Floyd算法 Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。 Floyd算法的基本思想 设G=(V,E)是一个带权有向图,其邻接矩阵为W。V={v1,v2,……,vn},W[1:n,1:n],则该图的Floyd算法可描述如下: 时间复杂度 Floyd算法的时间复杂度为O(N^3)。由于N较小,因此可以通过本题。 参考文献 Floyd算法讲解 C++ 代码 算法3 (最短路) $O(N^2)$ Bellman-Ford算法 Bellman-Ford算法是一种单源最短路径算法,可以处理负权边,但不能处理负权回路。 Bellman-Ford算法的基本思想 对于图中的任意一条边(u, v),Bellman-Ford算法会对每一条边进行一次松弛操作(Relax),并且这些操作是按照顺序进行的:当算法进行第i次松弛操作时,它只会改变长度为i+1的路径上的顶点的值。因此,当算法执行完第n-1次松弛操作后,路径长度最长不超过n-1,此时所有最短路径都已经求出。 时间复杂度 Bellman-Ford算法的时间复杂度为O(N*M)。由于N和M的范围较小,因此可以通过本题。 参考文献 Bellman-Ford算法讲解 C++ 代码 ### 回答2: Usaco 2007 Feb的问题是关于Cow Party的。这个问题中,农夫约翰有N头奶牛,它们之间通过一些路径相互连接,并且每个路径都有一个长度。约翰想要在某个时间将它的所有奶牛聚集在一起举办一个派对,现在他想知道所有奶牛从各自的位置到达聚会地点所需的最短时间。 为了解决这个问题,我们可以使用Dijkstra算法。我们首先需要创建一个节点集合,包含所有的奶牛和派对地点,并且初始化每个节点的最短时间为无穷大。接下来,我们选取一个起点节点--聚会地点,并将它的最短时间设置为0。然后我们开始遍历所有的节点,每次选择一个最短时间未确定的节点,并更新它的邻居节点的最短时间。我们重复这个过程,直到所有节点的最短时间都确定。 在更新节点的最短时间时,我们需要根据节点之间的路径长度来更新。我们检查从当前节点到邻居节点的路径长度加上当前节点的最短时间是否小于邻居节点目前的最短时间。如果是,则更新邻居节点的最短时间为新的最短时间。 最后,我们可以得到所有奶牛到达聚会地点所需的最短时间。我们找到所有奶牛起始位置的最长最短时间,即为我们的答案。 通过使用Dijkstra算法,我们可以解决这个问题并得到最优解。因此,Usaco 2007 Feb的Cow Party问题可以通过这种方法解决。

B3445 [Usaco2014 Feb] Roadblock

这道题是一道典型的最短路问题,可以使用Dijkstra算法或者Floyd算法来解决。 首先,我们需要构建一个有向图,每个节点代表一个城市,每条边代表两个城市之间的道路。题目中给出了每条边的长度,我们可以将其作为边的权值。 接下来,我们需要找到从起点到终点的最短路径。如果没有路障的限制,我们可以直接使用Dijkstra算法或者Floyd算法来求解。但是,由于题目中给出了一个路障,我们需要先去除这个路障,重新计算最短路径,然后再将路障加回去,再次计算最短路径。最后,将两次计算得到的最短路径加起来,就是我们所求的答案。 具体实现时,我们可以使用Dijkstra算法或者Floyd算法来计算最短路径,使用一个数组来记录每个节点到起点的最短距离。对于去除路障的情况,我们可以将路障的边的权值加上一个足够大的数,比如10000,表示这条路不通。对于重新计算最短路径的情况,我们可以使用相同的算法,只不过这次路障是通的。 最后,将两次计算得到的最短路径加起来,就是我们所求的答案。
阅读全文

相关推荐

大家在看

recommend-type

MTK_Camera_HAL3架构.doc

适用于MTK HAL3架构,介绍AppStreamMgr , pipelineModel, P1Node,P2StreamingNode等模块
recommend-type

带有火炬的深度增强学习:DQN,AC,ACER,A2C,A3C,PG,DDPG,TRPO,PPO,SAC,TD3和PyTorch实施...

状态:活动(在活动开发中,可能会发生重大更改) 该存储库将实现经典且最新的深度强化学习算法。 该存储库的目的是为人们提供清晰的pytorch代码,以供他们学习深度强化学习算法。 将来,将添加更多最先进的算法,并且还将保留现有代码。 要求 python &lt;= 3.6 张量板 体育馆> = 0.10 火炬> = 0.4 请注意,tensorflow不支持python3.7 安装 pip install -r requirements.txt 如果失败: 安装健身房 pip install gym 安装pytorch please go to official webisite to install it: https://pytorch.org/ Recommend use Anaconda Virtual Environment to manage your packages 安装tensorboardX pip install tensorboardX pip install tensorflow==1.12 测试 cd Char10\ TD3/ python TD3
recommend-type

C语言课程设计《校园新闻发布管理系统》.zip

C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zi 项目资源具有较高的学习借鉴价值,也可直接拿来修改复现。可以在这些基础上学习借鉴进行修改和扩展,实现其它功能。 可下载学习借鉴,你会有所收获。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。2. 部分字体以及插图等来自网络,若是侵权请联系删除。
recommend-type

基于FPGA的VHDL语言 乘法计算

1、采用专有算法实现整数乘法运算 2、节省FPGA自身的硬件乘法器。 3、适用于没有硬件乘法器的FPGA 4、十几个时钟周期就可出结果
recommend-type

ORAN协议 v04.00

ORAN协议 v04.00

最新推荐

recommend-type

goland2022.3.3自学用

goland2022.3.3自学用
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时
recommend-type

2635.656845多位小数数字,js不使用四舍五入保留两位小数,然后把结果千分位,想要的结果是2,635.65;如何处理

在JavaScript中,如果你想要将2635.656845这个数字精确地保留两位小数,并且去掉多余的千分位,可以使用`toFixed()`函数结合字符串切片的方法来实现。不过需要注意的是,`toFixed()`会返回一个字符串,所以我们需要先转换它。 以下是一个示例: ```javascript let num = 2635.656845; // 使用 toFixed() 保留两位小数,然后去掉多余的三位 let roundedNum = num.toFixed(2).substring(0, 5); // 如果最后一个字符是 '0',则进一步判断是否真的只有一位小数 if (round
recommend-type

解决最小倍数问题 - Ruby编程项目欧拉实践

根据给定文件信息,以下知识点将围绕Ruby编程语言、欧拉计划以及算法设计方面展开。 首先,“欧拉计划”指的是一系列数学和计算问题,旨在提供一种有趣且富有挑战性的方法来提高数学和编程技能。这类问题通常具有数学背景,并且需要编写程序来解决。 在标题“项目欧拉最小的多个NYC04-SENG-FT-030920”中,我们可以推断出需要解决的问题与找到一个最小的正整数,这个正整数可以被一定范围内的所有整数(本例中为1到20)整除。这是数论中的一个经典问题,通常被称为计算最小公倍数(Least Common Multiple,简称LCM)。 问题中提到的“2520是可以除以1到10的每个数字而没有任何余数的最小数字”,这意味着2520是1到10的最小公倍数。而问题要求我们计算1到20的最小公倍数,这是一个更为复杂的计算任务。 在描述中提到了具体的解决方案实施步骤,包括编码到两个不同的Ruby文件中,并运行RSpec测试。这涉及到Ruby编程语言,特别是文件操作和测试框架的使用。 1. Ruby编程语言知识点: - Ruby是一种高级、解释型编程语言,以其简洁的语法和强大的编程能力而闻名。 - Ruby的面向对象特性允许程序员定义类和对象,以及它们之间的交互。 - 文件操作是Ruby中的一个常见任务,例如,使用`File.open`方法打开文件进行读写操作。 - Ruby有一个内置的测试框架RSpec,用于编写和执行测试用例,以确保代码的正确性和可靠性。 2. 算法设计知识点: - 最小公倍数(LCM)问题可以通过计算两个数的最大公约数(GCD)来解决,因为LCM(a, b) = |a * b| / GCD(a, b),这里的“|a * b|”表示a和b的乘积的绝对值。 - 确定1到N范围内的所有整数的最小公倍数,可以通过迭代地计算当前最小公倍数与下一个整数的最小公倍数来实现。 - 欧拉问题通常要求算法具有高效的时间复杂度和空间复杂度,以处理更大的数值和更复杂的问题。 3. 源代码管理知识点: - 从文件名称列表可以看出,这是一个包含在Git版本控制下的项目。Git是一种流行的分布式版本控制系统,用于源代码管理。 - 在这种情况下,“master”通常指的是项目的主分支,是项目开发的主要工作流所在。 综上所述,本文件要求程序员使用Ruby语言实现一个算法,该算法能够找到一个最小的正整数,它能够被1到20的每个整数整除,同时涉及使用文件操作编写测试代码,并且需要对代码进行版本控制。这些都是程序员日常工作中可能遇到的技术任务,需要综合运用编程语言知识、算法原理和源代码管理技能。
recommend-type

电力电子技术:IT数据中心的能源革命者

# 摘要 本文深入探讨了电力电子技术在IT数据中心中的重要角色,阐述了其基础理论、关键参数以及在数据中心能源需求管理中的应用。文章详细分析了数据中心能耗的构成与评价指标,并讨论了电力供应架构及高效电力分配策略。通过介绍能量回收、模块化解决方案和能源存储技术,探讨了
recommend-type

设计一个程序,实现哈希表的相关运算:用Java语言编写

设计一个简单的哈希表(Hash Table),在Java中通常会使用`HashMap`或`LinkedHashMap`等内置数据结构。下面是一个基本的实现,使用`HashMap`作为示例: ```java import java.util.HashMap; public class HashTable { private HashMap<String, String> hashTable; // 使用HashMap存储键值对 // 初始化哈希表 public HashTable(int capacity) { this.hashTable = ne