transformer 回归预测
时间: 2023-09-06 12:10:28 浏览: 260
Transformer模型可以用于回归预测。Transformer是一个Seq2seq(Sequence-to-sequence)模型,可以用于处理序列到序列的任务,包括回归预测。 Transformers是目前非常流行的模型,被广泛应用于许多机器学习任务,包括时间序列预测。因此,可以使用Transformer模型进行回归预测任务,例如预测时间序列中的连续数值变量。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [李宏毅《深度学习》- Transformer](https://blog.csdn.net/kkm09/article/details/120910020)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [利用 Transformer 网络建立预测模型](https://blog.csdn.net/weixin_38739735/article/details/118037452)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文