mapreduce aprior java代码
时间: 2025-01-01 11:09:56 浏览: 6
MapReduce是一种分布式计算模型,由Google开发,用于处理大规模数据集的并行运算。它将复杂的数据处理任务分解成两个主要阶段:Map阶段和Reduce阶段。
在Java中,编写MapReduce程序通常需要使用Hadoop框架提供的API,主要包括`java.util.MapReduce.Job` 和 `Mapper`、`Reducer` 接口。以下是简单的一个 MapReduce 示例,计算一个文本文件中单词的频率:
```java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
for (String token : line.split("\\s+")) {
word.set(token);
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class); // 可选,可以减少Reduce阶段的数量
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
在这个例子中,`TokenizerMapper`负责读取输入数据,将每个单词转换为键值对,其中键是单词,值是一个1;`IntSumReducer`则负责合并所有相同的单词,并计算其出现次数。
阅读全文