信号量与共享内存结合实现互发互收,并在进程中加上信号捕获,如果进程捕获到2号信号,删除信号量,并让对端程序正常退出使用c语言编写 代码 要有两个程序

时间: 2024-09-11 09:04:23 浏览: 67
在多进程环境下,使用信号量与共享内存实现进程间通信(IPC)是一种常见的方法。信号量用于同步多个进程对共享资源的访问,而共享内存则为这些进程提供一个共同的存储空间。在C语言中,我们可以使用POSIX标准的`sem_init`和`shm_open`等函数来创建信号量和共享内存。 以下是一个简单的示例,展示了如何结合信号量和共享内存来实现两个进程间的互斥访问和通信。同时,其中一个进程会设置信号处理函数来响应用户发送的信号(例如SIGINT,即信号编号为2),在接收到该信号时执行相应的清理操作。 首先是发送端程序(producer.c): ```c #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/mman.h> #include <semaphore.h> #include <signal.h> #define SHM_NAME "/my_shm" #define SEM_NAME "/my_sem" #define SIZE 1024 int running = 1; sem_t *sem; void signal_handler(int sig) { if (sig == 2) { sem_unlink(SEM_NAME); munmap(sem, sizeof(*sem)); sem = NULL; running = 0; printf("Received signal, removing semaphore.\n"); } } int main() { sem = sem_open(SEM_NAME, O_CREAT, 0644, 1); if (sem == SEM_FAILED) { perror("sem_open"); exit(EXIT_FAILURE); } // Set signal handler signal(SIGINT, signal_handler); int shm_fd = shm_open(SHM_NAME, O_CREAT | O_RDWR, 0666); ftruncate(shm_fd, SIZE); void *shm_base = mmap(0, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0); if (shm_base == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } // Producer loop while (running) { sem_wait(sem); // Acquire the semaphore printf("Producing data...\n"); // Place data in shared memory sem_post(sem); // Release the semaphore sleep(1); // Artificial delay } // Cleanup munmap(shm_base, SIZE); close(shm_fd); shm_unlink(SHM_NAME); sem_close(sem); return 0; } ``` 然后是接收端程序(consumer.c): ```c #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/mman.h> #include <semaphore.h> #define SHM_NAME "/my_shm" #define SEM_NAME "/my_sem" #define SIZE 1024 sem_t *sem; int main() { sem = sem_open(SEM_NAME, 0); if (sem == SEM_FAILED) { perror("sem_open"); exit(EXIT_FAILURE); } int shm_fd = shm_open(SHM_NAME, O_RDONLY, 0); void *shm_base = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0); if (shm_base == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } // Consumer loop while (1) { sem_wait(sem); // Acquire the semaphore if (shm_base) { printf("Consuming data...\n"); // Consume data from shared memory } sem_post(sem); // Release the semaphore sleep(1); // Artificial delay } // Cleanup munmap(shm_base, SIZE); close(shm_fd); shm_unlink(SHM_NAME); sem_close(sem); return 0; } ``` 在实际使用中,这两个程序应该分别在不同的终端或通过守护进程的方式启动。发送端程序在接收到信号后会删除信号量,并在下一次循环中检查`running`变量,如果为0则退出循环,并执行清理操作。接收端程序在尝试访问共享内存时,如果没有正确清理,可能会遇到段错误,因此在实际应用中需要确保共享内存的同步和正确的清理机制。
阅读全文

相关推荐

最新推荐

recommend-type

单片机与DSP中的利用单片机实现的模拟信号和数字信号单线混合传输

在现代电子工程中,信号传输是一项关键的技术,尤其是在单片机和数字信号处理(DSP)领域。传统的做法是使用多芯电缆将模拟信号和数字信号分开传输,以避免相互干扰。然而,这种方法不仅增加了电缆的体积和重量,...
recommend-type

数据转换/信号处理中的CAN/FlexRay网关的设计与实现

在CAN/FlexRay网关的软件实现中,首先需要对CAN网络和FlexRay网络的协议进行深入理解。CAN协议以它的实时性、无冲突仲裁和低成本而被广泛应用,但受限于较低的传输速率。相比之下,FlexRay协议提供更高的传输速度和...
recommend-type

数据转换/信号处理中的基于AGC算法的音频信号处理方法及FPGA实现

总的来说,AGC算法在音频信号处理中的应用,结合FPGA的硬件实现,能够有效提升通信系统的稳定性和效率,减少信号失真,确保语音通信的质量。随着通信技术的不断发展,AGC算法及其FPGA实现将继续发挥重要作用,为提高...
recommend-type

模拟技术中的AD698型LVDT信号调理电路的原理与应用

【AD698型LVDT信号调理电路】是模拟技术中的关键组件,主要应用于线性位移检测领域。LVDT(线性位移差分变压器)是一种非接触式的传感器,能够将机械位移转化为电信号。AD698是美国Analog Devices公司推出的一款专门...
recommend-type

适用于北斗GNSS-R接收机的反射信号捕获算法

结合北斗系统的星座构成,包括GEO、MEO和IGSO卫星,设计的算法需考虑不同卫星信号的特性,以确保在各种环境条件下都能高效捕获反射信号。 总的来说,这项研究为北斗GNSS-R接收机提供了一种更为高效的反射信号捕获...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。