删除代码中除注释外,不必要存在的东西
时间: 2024-10-25 10:15:02 浏览: 10
如何在JavaScript中谨慎使用代码注释
以下是删除了除注释外不必要的内容后的代码:
```python
# 定义路径常量
TRAIN_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\train"
VAL_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\val"
TEST_DATA_DIR = "C:\\Users\\24067\\Desktop\\peach_split\\test"
TRAIN_LABEL_PATH = "C:\\Users\\24067\\Desktop\\train_label.json"
VAL_LABEL_PATH = "C:\\Users\\24067\\Desktop\\val_label.json"
OUTPUT_PATH = "C:\\Users\\24067\\Desktop\\data\\submission.csv"
# 加载数据集
def load_data(data_dir, label_path):
with open(label_path, 'r') as f:
labels_list = json.load(f)
labels = {item['文件名']: item['标签'] for item in labels_list if '文件名' in item and '标签' in item}
images = []
targets = []
for file_name, label in labels.items():
img_path = os.path.join(data_dir, file_name)
if not os.path.exists(img_path):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
images.append(img_array)
targets.append(label)
if len(images) == 0:
raise ValueError("No valid images found.")
return np.array(images), np.array(targets)
# 加载训练集和验证集
X_train, y_train = load_data(TRAIN_DATA_DIR, TRAIN_LABEL_PATH)
X_val, y_val = load_data(VAL_DATA_DIR, VAL_LABEL_PATH)
# 标签映射
label_map = {'特级': 3, '一级': 2, '二级': 1, '三级': 0}
y_train = np.array([label_map[label] for label in y_train])
y_val = np.array([label_map[label] for label in y_val])
# 创建模型
def create_resnet_model(input_shape=(128, 128, 3)):
base_model = ResNet50(weights=None, include_top=False, input_shape=input_shape)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
predictions = Dense(4, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
return model
# 实例化模型
model = create_resnet_model()
# 编译模型
model.compile(optimizer=Adam(learning_rate=0.0001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 图像增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
zoom_range=0.15,
horizontal_flip=True,
vertical_flip=True,
fill_mode='nearest'
)
# 训练模型
history = model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=50, validation_data=(X_val, y_val))
# 评估模型
def evaluate_model(model, X, y):
predictions = model.predict(X)
predicted_labels = np.argmax(predictions, axis=1)
accuracy = accuracy_score(y, predicted_labels)
f1 = f1_score(y, predicted_labels, average='weighted')
print(f'Accuracy: {accuracy:.4f}')
print(f'F1 Score: {f1:.4f}')
return accuracy, f1
evaluate_model(model, X_val, y_val)
# 预测测试集并保存结果
def predict_and_save(test_data_dir, output_path):
test_images = []
test_file_names = []
for file_name in os.listdir(test_data_dir):
img_path = os.path.join(test_data_dir, file_name)
if not os.path.exists(img_path) or not file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
continue
img = Image.open(img_path).resize((128, 128))
img_array = np.array(img) / 255.0
test_images.append(img_array)
test_file_names.append(file_name)
test_images = np.array(test_images)
predictions = model.predict(test_images)
predicted_labels = np.argmax(predictions, axis=1)
label_map_inv = {v: k for k, v in label_map.items()}
predicted_labels = [label_map_inv[label] for label in predicted_labels]
submission_df = pd.DataFrame({'文件名': test_file_names, '标签': predicted_labels})
submission_df.to_csv(output_path, index=False)
# 进行预测并保存结果
predict_and_save(TEST_DATA_DIR, OUTPUT_PATH)
```
这段代码保留了所有的注释,并去除了不必要的空格和换行符。
阅读全文