恒等残差 pytorch代码实现
时间: 2023-11-14 18:12:52 浏览: 62
pytorch基础模型代码实现
恒等残差是指在残差网络中,输入和输出的维度相同,且直接相加。在Pytorch中,恒等残差可以通过如下代码实现:
```python
import torch.nn as nn
class IdentityResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super(IdentityResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out
```
其中,`in_channels`表示输入通道数,`out_channels`表示输出通道数,`stride`表示步长。在`forward`函数中,首先将输入保存为`identity`,然后进行卷积、BN、ReLU等操作,最后将输出和`identity`相加,得到恒等残差。
阅读全文