%% MATLAB自带kmeans函数 subplot(2,1,2) %画子图,在这里是一图上可画两张子图 cluster_num=4; %自定义分类数 [index_km,center_km]=kmeans(data,cluster_num) ;%MATLAB自带kmeans函数 a=unique(index_km); %找出分类出的个数 C=cell(1,length(a)); for i=1:length(a) C(1,i)={find(index_km==a(i))}; end for j=1:cluster_num data_get=data(C{1,j},:); scatter(data_get(:,1),data_get(:,2),100,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9); hold on end plot(center_km(:,1),center_km(:,2),'kd','LineWidth',2); hold on sc_k=mean(silhouette(data,index_km)); title_str1=['MATLAB自带kmeans函数',' 聚类数为:',num2str(cluster_num),' SC轮廓系数:',num2str(sc_k)]; title(title_str1) [index_km, center_km] = kmeans(data, cluster_num);disp('最终聚类中心:');disp(center_km);在这个代码中将聚类中心输出为一个数据矩阵X
时间: 2023-06-24 09:07:33 浏览: 119
在这个代码中,聚类中心已经被存储在了变量 center_km 中,它是一个 cluster_num 行,每行包含两个元素的矩阵,其中每个元素表示一个聚类中心在二维平面上的坐标。所以,如果你想将聚类中心输出为一个数据矩阵 X,可以使用下面的代码:
```
X = center_km;
```
执行这行代码后,变量 X 就包含了聚类中心的坐标信息。
相关问题
matlab自带kmeans函数
MATLAB中确实有自带的kmeans函数,可以用于实现k-Means算法。下面是一个使用MATLAB自带的kmeans函数进行k-Means聚类的示例代码:
```matlab
% 准备数据
x = [1, 2, 3; 2, 3, 4; 2, 3, 2; 5, 6, 7; 6, 7, 8; 5, 6, 5];
% 聚类数量
k = 2;
% 运行k-Means算法
[idx, C] = kmeans(x, k);
% 可视化聚类结果
scatter(x(:, 1), x(:, 2), [], idx, 'filled');
hold on;
scatter(C(:, 1), C(:, 2), 100, [1, 2], 'filled', 'MarkerEdgeColor', 'k', 'LineWidth', 1.5);
legend('Cluster 1', 'Cluster 2', 'Centroids');
xlabel('Feature 1');
ylabel('Feature 2');
```
这段代码首先准备了一个数据矩阵x,然后指定了聚类数量k。接下来,使用kmeans函数运行k-Means算法,返回每个样本所属的聚类索引idx和聚类中心C。最后,使用scatter函数将数据点按照聚类结果进行可视化,并在图中标出聚类中心。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)