OpensSL 1.1.1+, currently " upports 0penssL 1.1.1+, currently the 'ssl' module is compiled with ‘OpenSSL 1.1.0h 27 Mar 2018'. See:

时间: 2023-12-25 15:29:52 浏览: 100
ZIP

openssl最新版本

根据提供的引用内容,您遇到的问题是关于OpenSSL版本的兼容性。您的系统中的ssl模块是使用OpenSSL 1.1.0编译的,但您需要的是OpenSSL 1.1.1或更高版本。 解决这个问题的一种方法是升级您的OpenSSL版本。根据引用中提到的,您可以尝试在CentOS 7上安装最新版本的OpenSSL RPM包。这样,您就可以满足OpenSSH对OpenSSL 1.1.1版本的依赖。 另外,根据引用中提到的,即使您重新安装了OpenSSL 1.1.1,仍然会报错。这可能是因为您的Windows 7环境不支持OpenSSL 1.1.1。在这种情况下,您可能需要考虑升级您的操作系统或使用其他兼容的SSL库。
阅读全文

相关推荐

application/x-rar
openssl 编程 当前版本 赵春平 著 第一章 基础知识 8 1.1 对称算法 8 1.2 摘要算法 9 1.3 公钥算法 9 1.4 回调函数 11 第二章 openssl简介 13 2.1 openssl简介 13 2.2 openssl安装 13 2.2.1 linux下的安装 13 2.2.2 windows编译与安装 14 2.3 openssl源代码 14 2.4 openssl学习方法 16 第三章 堆栈 17 3.1 openssl堆栈 17 3.2 数据结构 17 3.3 源码 18 3.4 定义用户自己的堆栈函数 18 3.5 编程示例 19 第四章 哈希表 21 4.1 哈希表 21 4.2 哈希表数据结构 21 4.3 函数说明 23 4.4 编程示例 25 第五章 内存分配 27 5.1 openssl内存分配 27 5.2 内存数据结构 27 5.3 主要函数 28 5.4 编程示例 29 第六章 动态模块加载 30 6.1 动态库加载 30 6.2 DSO概述 30 6.3 数据结构 31 6.4 编程示例 32 第七章 抽象IO 34 7.1 openssl抽象IO 34 7.2 数据结构 34 7.3 BIO 函数 36 7.4 编程示例 36 7.4.1 mem bio 36 7.4.2 file bio 37 7.4.3 socket bio 38 7.4.4 md BIO 39 7.4.5 cipher BIO 40 7.4.6 ssl BIO 41 7.4.7 其他示例 42 第八章 配置文件 43 8.1 概述 43 8.2 openssl配置文件读取 43 8.3 主要函数 44 8.4 编程示例 44 第九章 随机数 46 9.1 随机数 46 9.2 openssl随机数数据结构与源码 46 9.3 主要函数 48 9.4 编程示例 48 第十章 文本数据库 50 10.1 概述 50 10.2 数据结构 51 10.3 函数说明 51 10.4 编程示例 52 第十一章 大数 54 11.1 介绍 54 11.2 openssl大数表示 54 11.3 大数函数 55 11.4 使用示例 58 第十二章 BASE64编解码 64 12.1 BASE64编码介绍 64 12.2 BASE64编解码原理 64 12.3 主要函数 65 12.4 编程示例 66 第十三章 ASN1库 68 13.1 ASN1简介 68 13.2 DER编码 70 13.3 ASN1基本类型示例 70 13.4 openssl 的ASN.1库 73 13.5 用openssl的ASN.1库DER编解码 74 13.6 Openssl的ASN.1宏 74 13.7 ASN1常用函数 75 13.8 属性证书编码 89 第十四章 错误处理 93 14.1 概述 93 14.2 数据结构 93 14.3 主要函数 95 14.4 编程示例 97 第十五章 摘要与HMAC 100 15.1 概述 100 15.2 openssl摘要实现 100 15.3 函数说明 101 15.4 编程示例 101 15.5 HMAC 103 第十六章 数据压缩 104 16.1 简介 104 16.2 数据结构 104 16.3 函数说明 105 16.4 openssl中压缩算法协商 106 16.5 编程示例 106 第十七章 RSA 107 17.1 RSA介绍 107 17.2 openssl的RSA实现 107 17.3 RSA签名与验证过程 108 17.4 数据结构 109 17.4.1 RSA_METHOD 109 17.4.2 RSA 110 17.5 主要函数 110 17.6编程示例 112 17.6.1密钥生成 112 17.6.2 RSA加解密运算 113 17.6.3签名与验证 116 第十八章 DSA 119 18.1 DSA简介 119 18.2 openssl的DSA实现 120 18.3 DSA数据结构 120 18.4 主要函数 121 18.5 编程示例 122 18.5.1密钥生成 122 18.5.2签名与验证 124 第十九章DH 126 19.1 DH算法介绍 126 19.2 openssl的DH实现 127 19.3数据结构 127 19.4 主要函数 128 19.5 编程示例 129 第二十章 椭圆曲线 132 20.1 ECC介绍 132 20.2 openssl的ECC实现 133 20.3 主要函数 135 20.3.1参数设置 135 20.3.2参数获取 136 20.3.3转化函数 137 20.3.4其他函数 137 20.4 编程示例 139 第二十一章 EVP 143 21.1 EVP简介 143 21.2 数据结构 143 21.2.1 EVP_PKEY 144 21.2.2 EVP_MD 144 21.2.3 EVP_CIPHER 145 21.2.4 EVP_CIPHER_CTX 146 21.3 源码结构 147 21.4 摘要函数 147 21.5 对称加解密函数 148 21.6 非对称函数 149 21.7 BASE64编解码函数 149 21.8其他函数 150 21.9 对称加密过程 152 21.10 编程示例 152 第二十二章 PEM格式 159 22.1 PEM概述 159 22.2 openssl的PEM实现 160 22.3 PEM函数 161 22.4 编程示例 161 第二十三章 Engine 165 23.1 Engine概述 165 23.2 Engine支持的原理 165 23.3 Engine数据结构 166 23.4 openssl 的Engine源码 167 23.5 Engine函数 167 23.6 实现Engine示例 169 第二十四章 通用数据结构 182 24.1通用数据结构 182 24.2 X509_ALGOR 182 24.3 X509_VAL 184 24.4 X509_SIG 185 24.5 X509_NAME_ENTRY 186 24.6 X509_NAME 187 24.7 X509_EXTENSION 193 24.8 X509_ATTRIBUTE 199 24.9 GENERAL_NAME 200 第二十五章 证书申请 203 25.1 证书申请介绍 203 25.2 数据结构 203 25.3 主要函数 204 25.4 编程示例 206 25.4.1生成证书请求文件 206 25.4.2 解码证书请求文件 208 第二十六章 X509数字证书 210 26.1 X509数字证书 210 26.2 opessl实现 210 26.3 X509数据结构 210 26.4 X509_TRUST与X509_CERT_AUX 214 26.5 X509_PURPOSE 215 26.6 主要函数 218 26.7 证书验证 221 26.7.1证书验证项 221 26.7.2 Openssl中的证书验证 221 第二十七章 OCSP 222 27.1 概述 222 27.2 openssl实现 222 27.3 主要函数 222 27.4编程示例 227 第二十八章 CRL 228 28.1 CRL介绍 228 28.2 数据结构 228 28.3 CRL函数 230 28.4 编程示例 231 第二十九章 PKCS7 233 29.1概述 233 29.2 数据结构 233 29.3 函数 234 29.4 消息编解码 235 29.4.1 data 235 29.4.2 signed data 236 29.4.3 enveloped 237 29.4.4 signed_and_enveloped 238 29.4.5 digest 238 29.4.6 encrypted 239 29.4.7 读取PEM 239 29.4.8 解码pkcs7 240 第三十章 PKCS12 241 30.1 概述 241 30.2 openss实现 241 30.3数据结构 242 30.4函数 243 30.5 编程示例 245 第三十一章 SSL实现 254 31.1概述 254 31.2 openssl实现 254 31.3 建立SSL测试环境 254 31.4 数据结构 256 31.5 加密套件 256 31.6 密钥信息 257 31.7 SESSION 258 31.8 多线程支持 258 31.9 编程示例 259 31.10 函数 270 第三十二章 Openssl命令 272 32.1概述 272 32.2 asn1parse 272 32.3 dgst 274 32.4 gendh 275 32.5 passwd 276 32.6 rand 276 32.7 genrsa 277 32.8 req 278 32.9 x509 280 32.10 version 283 32.11 speed 283 32.12 sess_id 284 32.13 s_server 284 32.14 s_client 286 32.15 rsa 288 32.16 pkcs7 289 32.17 dsaparam 290 32.18 gendsa 291 32.19 enc 291 32.20 ciphers 292 32.21 CA 293 32.22 verify 296 32.23 rsatul 297 32.24 crl 299 32.25 crl2pkcs7 300 32.26 errstr 300 32.27 ocsp 301 32.28 pkcs12 304 32.29 pkcs8 306 32.30 s_time 307 32.31 dhparam和dh 308 32.32 ecparam 309 32.33 ec 310 32.34 dsa 311 32.35 nseq 312 32.36 prime 313 32.37 smime 313

最新推荐

recommend-type

2023年第三届长三角数学建模c题考试题目.zip

2023年第三届长三角数学建模c题考试题目,可下载练习
recommend-type

基于人工智能的毕业设计辅助系统基础教程

随着人工智能技术的飞速发展,越来越多的学生和研究人员开始利用AI技术来辅助他们的毕业设计。本教程旨在指导读者如何开发一个基于人工智能的毕业设计辅助系统,帮助学生更高效地完成毕业设计任务。
recommend-type

yolo算法-人脸情绪数据集-9400张图像带标签-内容-愤怒-害怕-厌恶-中立的-惊喜-悲哀的-幸福的.zip

yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值
recommend-type

ijkplayer播放rtsp延时越来越高处理方案

文件1
recommend-type

分布式应用运行时的落地实践.pdf

分布式应用运行时的落地实践.pdf
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。