写一段用python语言和opencv库提取图像轮廓的代码

时间: 2023-03-12 22:42:04 浏览: 61
答:import cv2 img = cv2.imread('图像路径') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150) contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, contours, -1, (0,255,0), 3) cv2.imshow('result', img) cv2.waitKey(0)
相关问题

写一段Python代码提取图像轮廓

下面是一段使用 OpenCV 库提取图像轮廓的 Python 代码: ``` import cv2 import numpy as np # 读取图像 img = cv2.imread("image.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用 Canny 边缘检测算法检测边缘 edges = cv2.Canny(gray, 50, 150) # 查找图像中的轮廓 contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 在原图上绘制轮廓 cv2.drawContours(img, contours, -1, (0, 255, 0), 2) # 显示结果图像 cv2.imshow("Contours", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在代码中,首先我们读取了图像,并将其转换为灰度图。然后,使用 Canny 边缘检测算法检测图像中的边缘。最后,使用 `cv2.findContours()` 函数查找图像中的轮廓,并在原图上绘制出轮廓,最后显示结果图像。

用python写一段提取图像主体部分的代码

好的,以下是Python代码示例来提取图像主体部分: ```python import cv2 # 读取图片 img = cv2.imread('your_image.jpg') # 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 进行二值化 _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 获取边缘 contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnt = max(contours, key=cv2.contourArea) # 获取矩形框坐标 x, y, w, h = cv2.boundingRect(cnt) # 裁剪图像 crop = img[y:y + h, x:x + w] # 显示结果 cv2.imshow('crop', crop) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码使用 OpenCV 库来提取图像主体部分。它将图像转换为灰度图像,进行二值化,并查找图像中的轮廓。接着,它找到面积最大的轮廓,并从中提取矩形框坐标。最后,它对原始图像进行裁剪,只保留主体部分,并将结果显示出来。

相关推荐

最新推荐

chromedriver_mac64_84.0.4147.30.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

深度学习在计算机视觉中的应用.docx

深度学习在计算机视觉中的应用.docx

chromedriver_linux64_72.0.3626.7.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

chromedriver_mac32_2.6.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

数据分析与挖掘技术之R语言实战 第6课-数据降维-主成分分析和因子分析 共11页.pdf

【课程大纲】 第1课-R语言要点详解 数据结构概述 共19页 第2课-数据整理 数据预处理 共10页 第3课-统计思维和可视化探索 共16页 第4课-用回归预测未来 共16页 第5课-聚类分析 共15页 第6课-数据降维-主成分分析和因子分析 共11页 第7课-关联规则 共6页 第8课-决策树 共17页

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�