请帮我用Bert和pytorch写一个用于音频文件的Encoder神经网络代码
时间: 2023-04-09 17:00:23 浏览: 220
我可以回答这个问题。以下是一个使用Bert和pytorch编写的音频文件编码器神经网络的示例代码:
```python
import torch
from transformers import BertModel, BertTokenizer
class AudioEncoder(torch.nn.Module):
def __init__(self):
super(AudioEncoder, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def forward(self, audio_file):
# Convert audio file to text using speech-to-text API
text = convert_audio_to_text(audio_file)
# Tokenize text using BERT tokenizer
input_ids = torch.tensor([self.tokenizer.encode(text, add_special_tokens=True)])
# Pass input_ids through BERT model to get embeddings
outputs = self.bert(input_ids)
embeddings = outputs[0]
# Average embeddings to get final audio encoding
encoding = torch.mean(embeddings, dim=1)
return encoding
```
请注意,这只是一个示例代码,您需要根据您的具体需求进行修改和调整。
阅读全文