python读取csv文件聚类分析
时间: 2023-11-18 19:55:40 浏览: 213
python读取csv文件
5星 · 资源好评率100%
Python可以使用pandas库读取csv文件,并使用networkx和cylouvain库进行聚类分析。具体步骤如下:
1. 导入所需的库:numpy、pandas、networkx、cylouvain。
2. 使用pandas库读取csv文件,将数据转化为numpy数组。
3. 创建一个空的无向图graph。
4. 遍历数组中的每一行,将每一行的第一列和第二列作为节点,第三列作为边的权重,将节点和边添加到图中。
5. 使用cylouvain库进行聚类分析,得到每个节点所属的聚类。
6. 根据聚类结果,将节点分组,得到每个聚类的节点列表。
代码示例:
```
import numpy as np
import pandas as pd
import networkx as nx
import cylouvain
# 读取csv文件
csv = pd.read_csv("filename.csv")
# 将数据转化为numpy数组
data = csv.values
# 创建一个空的无向图graph
graph = nx.Graph()
# 遍历数组中的每一行,将每一行的第一列和第二列作为节点,第三列作为边的权重,将节点和边添加到图中
for row in data:
node1 = row[0]
node2 = row[1]
weight = row[2]
graph.add_edge(node1, node2, weight=float(weight))
# 使用cylouvain库进行聚类分析,得到每个节点所属的聚类
partition = cylouvain.best_partition(graph)
# 根据聚类结果,将节点分组,得到每个聚类的节点列表
clusters = {}
for node, cluster_id in partition.items():
if cluster_id not in clusters:
clusters[cluster_id] = []
clusters[cluster_id].append(node)
```
阅读全文