linux异步io驱动

时间: 2023-10-27 19:53:23 浏览: 45
Linux异步IO驱动是一种实现非阻塞IO操作的方法,其主要通过预先注册回调函数来达到异步处理IO请求的目的。在异步IO操作中,当用户请求IO操作时,驱动首先将IO请求保存在一个队列中,然后返回给用户。当IO操作完成后,驱动会调用预先注册的回调函数来通知用户数据已经准备好,用户可以对数据进行处理。这种方法可以提高系统的并发性能和响应速度。
相关问题

linux异步io驱动 DEMO

我可以为您提供一个简单的基于Linux异步IO的驱动程序范例。这个例子演示了如何使用异步IO驱动程序在Linux内核中使用I/O, 并且可以说是一个非常简单的实现。但是需要注意的是,这个例子并不是用来在实际应用中使用的,而是用来理解和学习异步IO在Linux中的使用方法。以下是基于Linux异步IO的驱动程序范例代码: ```c #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/cdev.h> #include <linux/version.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/slab.h> #include <asm/uaccess.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/async.h> #include <linux/ioctl.h> #define DEVICE_NAME "my_device" // 设备名称 #define MSG_BUFFER_LEN 2048 // 消息缓冲区长度 #define MAJOR_NUM 101 // 设备主设备号 #define MSG_START_CMD 0x00 // 消息开始命令 #define MSG_STOP_CMD 0x01 // 消息停止命令 static int major_num; // 设备主设备号 static char *msg_buffer; static struct class *my_class; static struct device *my_device; static struct cdev my_cdev; static DECLARE_WAIT_QUEUE_HEAD(read_wq); // 定义等待队列 read_wq static struct async_struct my_async; typedef struct { unsigned char command; unsigned int data_len; void * data; // 存储数据 } command_t; // 驱动程序打开函数 static int my_device_open(struct inode *inode, struct file *file) { return 0; } // 驱动程序关闭函数 static int my_device_release(struct inode *inode, struct file *file) { return 0; } // 驱动程序读函数 static ssize_t my_device_read(struct file *filp, char __user *buf, size_t len, loff_t *off) { int size; if( async_scheduled(&my_async) ) // 如果异步请求完成 { size = async_error(&my_async); // 获取异步请求结果 if(size < 0) // 如果请求错误 return size; // 如果请求成功 copy_to_user(buf, my_async.buf, size); // 将缓冲区中的数据传递给用户空间 async_done(&my_async, size); // 完成异步请求 return size; } if(wait_event_interruptible(read_wq, async_scheduled(&my_async))) // 等待异步请求 return -ERESTARTSYS; // 如果被中断则返回错误 size = async_error(&my_async); // 获取异步请求结果 if(size < 0) // 如果请求错误 return size; // 如果请求成功 copy_to_user(buf, my_async.buf, size); // 将缓冲区中的数据传递给用户空间 async_done(&my_async, size); // 完成异步请求 return size; } // 驱动程序写函数 static ssize_t my_device_write(struct file *filp, const char __user *buf, size_t len, loff_t *off) { int size; unsigned int data_len; command_t cmd; cmd.data = kmalloc(MSG_BUFFER_LEN, GFP_KERNEL); if (copy_from_user(&cmd, buf, sizeof(cmd))) // 从用户空间中拷贝数据 goto ERROR_SYS; if (cmd.data_len > MSG_BUFFER_LEN) // 请求的数据长度过长 goto ERROR_CMD; if (copy_from_user(cmd.data, buf + sizeof(cmd), cmd.data_len)) // 从用户空间中拷贝数据 goto ERROR_SYS; size = async_read(my_async.q, cmd.command, cmd.data, cmd.data_len, 0); // 发送异步请求 if(size < 0) // 如果请求错误 goto ERROR_SYS; kfree(cmd.data); return cmd.data_len + sizeof(unsigned char) + sizeof(unsigned int); ERROR_CMD: kfree(cmd.data); return -EINVAL; // 命令错误 ERROR_SYS: kfree(cmd.data); return -EFAULT; // 拷贝数据错误 } // 驱动程序控制命令函数 static long my_device_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { if (cmd == MSG_STOP_CMD) // 发送停止异步请求命令 { async_stop(&my_async.q); return 0; } return -ENOTTY; } // 驱动程序操作函数 static struct file_operations my_device_fops = { .owner = THIS_MODULE, .open = my_device_open, .release = my_device_release, .read = my_device_read, .write = my_device_write, .unlocked_ioctl = my_device_ioctl, .compat_ioctl = my_device_ioctl, }; // 驱动程序初始化函数,注册设备 static int __init my_device_init(void) { int res; dev_t dev; // 申请设备号 res = alloc_chrdev_region(&dev, 0, 1, DEVICE_NAME); if (res < 0) { printk(KERN_ERR "Failed to allocate char device region\n"); return res; } // 获得设备主设备号 major_num = MAJOR(dev); msg_buffer = kmalloc(MSG_BUFFER_LEN, GFP_KERNEL); if (!msg_buffer) // 申请内核缓冲区失败 goto ERR_KMALLOC; async_init(&my_async, msg_buffer, MSG_BUFFER_LEN, GFP_KERNEL); // 初始化异步请求结构体 cdev_init(&my_cdev, &my_device_fops); // 初始化设备 res = cdev_add(&my_cdev, MKDEV(major_num, 0), 1); // 加入驱动程序 if (res < 0) { printk(KERN_ERR "Couldn't add the device to the system\n"); goto ERR_CDEV_ADD; } my_class = class_create(THIS_MODULE, DEVICE_NAME); // 创建设备类 if (IS_ERR(my_class)) // 如果创建设备类失败 goto ERR_CLASS_CREATE; my_device = device_create(my_class, NULL, MKDEV(major_num, 0), NULL, DEVICE_NAME); // 创建设备 if (IS_ERR(my_device)) // 如果创建设备失败 goto ERR_DEVICE_CREATE; printk(KERN_INFO "Device registered with major number %d\n", MAJOR(dev)); return 0; ERR_DEVICE_CREATE: class_destroy(my_class); ERR_CLASS_CREATE: cdev_del(&my_cdev); ERR_CDEV_ADD: kfree(msg_buffer); ERR_KMALLOC: unregister_chrdev_region(MKDEV(major_num, 0), 1); return res; } // 驱动程序卸载函数,注销设备 static void __exit my_device_exit(void) { device_destroy(my_class, MKDEV(major_num, 0)); class_unregister(my_class); class_destroy(my_class); cdev_del(&my_cdev); kfree(msg_buffer); unregister_chrdev_region(MKDEV(major_num, 0), 1); async_release(&my_async.q); // 释放异步请求队列资源 printk(KERN_INFO "Device unregistered\n"); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("CSDN"); MODULE_DESCRIPTION("Driver for my device"); module_init(my_device_init); module_exit(my_device_exit); ``` 这是一个非常简单的基于Linux异步IO的驱动程序范例,该范例可以与用户空间应用程序交互来实现I/O操作。由于涉及异步IO操作,需要相应的理解和学习才能正确使用。

Linux驱动中的异步通知

在Linux驱动中,异步通知是指当设备完成某些操作时,设备驱动程序不会立即返回结果,而是通过注册的回调函数通知内核或用户空间应用程序。 异步通知通常用于处理需要时间才能完成的操作,例如网络传输、磁盘IO等。当驱动程序发出异步操作请求时,设备会在后台完成操作,并在完成后通过回调函数通知驱动程序或用户空间应用程序,此时驱动程序可以继续其它操作。 在Linux驱动中,异步通知可以通过以下方式实现: 1. 使用回调函数:当设备完成操作时,设备驱动程序会调用事先注册的回调函数,通知内核或用户空间应用程序。 2. 使用信号量:设备驱动程序可以在完成操作时释放信号量,内核或用户空间应用程序可以等待信号量被释放后再执行相应操作。 3. 使用中断:设备驱动程序可以注册中断处理函数,在设备完成操作后触发中断,中断处理函数可以通知内核或用户空间应用程序。 异步通知在Linux驱动中非常常见,可以有效提高系统的性能和响应速度。但是,使用异步通知需要注意线程同步和数据一致性等问题,开发人员需要仔细考虑这些问题以确保系统的稳定性和可靠性。

相关推荐

最新推荐

recommend-type

99-智慧园区数据平台方案.pptx

99-智慧园区数据平台方案.pptx
recommend-type

node-v12.11.1-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于Springboot+Vue华强北商城二手手机管理系统-毕业源码案例设计.zip

网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。系统化是必要的,设计网上系统不仅会节约人力和管理成本,还会安全保存庞大的数据量,对于信息的维护和检索也不需要花费很多时间,非常的便利。 网上系统是在MySQL中建立数据表保存信息,运用SpringBoot框架和Java语言编写。并按照软件设计开发流程进行设计实现。系统具备友好性且功能完善。 网上系统在让售信息规范化的同时,也能及时通过数据输入的有效性规则检测出错误数据,让数据的录入达到准确性的目的,进而提升数据的可靠性,让系统数据的错误率降至最低。 关键词:vue;MySQL;SpringBoot框架 【引流】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

Excel模版:工资条模板

Excel工资条模板是一种预先设计好的电子表格文件,主要用于生成和打印员工的工资单,让员工清楚了解自己的工资组成和扣款详情。模板通常包含了以下几个关键部分: 1. **员工信息区**: - 姓名 - 员工编号/工号 - 部门 - 职位 2. **工资构成区**: - 基本工资 - 岗位工资 - 绩效奖金 - 加班工资 - 其他补贴(如交通补贴、餐补、全勤奖等) - 各项津贴(如高温补贴、取暖费等) - 其他应发收入(如年终奖、提成、福利等) 3. **扣款项目区**: - 社保扣款(养老保险、医疗保险、失业保险、工伤保险、生育保险) - 住房公积金 - 个人所得税 - 其他扣款(如迟到、旷工、违规罚款等) - 预借还款(如有) 4. **工资结算区**: - 应发工资总额 - 扣款总额 - 实发工资 5. **备注栏**: - 用于标注本月工资的特殊情况说明,如请假、调休、加班等情况。 6. **签名栏**: - 供员工确认工资数额无误后签名,也可以
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依