帮我写一个基于卷积神经网络的fer2013人脸表情识别代码
时间: 2024-05-04 16:16:06 浏览: 116
好的,我可以为您提供一个基于卷积神经网络的fer2013人脸表情识别代码,如下所示:
首先,导入必要的库和模块:
```
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.utils import np_utils
```
接着,读入fer2013数据集并进行预处理:
```
data = pd.read_csv('fer2013.csv')
# 将像素数据转换为图像
pixels = data['pixels'].tolist()
width, height = 48, 48
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(width, height)
faces.append(face.astype('float32'))
faces = np.asarray(faces)
faces = np.expand_dims(faces, -1)
# 将表情数据转换为one-hot向量
emotions = pd.get_dummies(data['emotion']).values
```
然后,划分数据集并进行模型训练:
```
num_classes = emotions.shape[1]
# 划分训练集、验证集和测试集
xtrain, ytrain = faces[:28709], emotions[:28709]
xtest, ytest = faces[28709:35887], emotions[28709:35887]
xvalid, yvalid = faces[35887:], emotions[35887:]
# 构建模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(width, height, 1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(xtrain, ytrain, batch_size=128, epochs=15, verbose=1, validation_data=(xvalid, yvalid))
# 在测试集上评估模型
score = model.evaluate(xtest, ytest, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
最后,可以使用训练好的模型进行人脸表情识别:
```
emotion_labels = {0: 'angry', 1: 'disgust', 2: 'fear', 3: 'happy', 4: 'sad', 5: 'surprise', 6: 'neutral'}
# 随机选择一张人脸图像进行识别
idx = np.random.randint(len(xtest))
face = np.expand_dims(xtest[idx], axis=0)
prediction = model.predict(face)[0]
label = emotion_labels[prediction.argmax()]
confidence = prediction[prediction.argmax()]
print('Predicted emotion:', label)
print('Confidence:', confidence)
```
希望这份代码能对您有所帮助!
阅读全文