将client_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[i])改写为以fashion_mnist为数据集的代码

时间: 2023-06-08 16:07:01 浏览: 26
Sure, 下面是以fashion_mnist为数据集的代码: ```python import tensorflow as tf from tensorflow import keras from tensorflow_federated import datasets fashion_mnist_train, fashion_mnist_test = datasets.tffashion_mnist.load_data() def get_fashion_mnist_datasets(): def preprocess(dataset): def batch_format_fn(element): return (tf.reshape(element['pixels'], [-1, 784]), element['label']) return dataset.repeat(NUM_EPOCHS) .shuffle(SHUFFLE_BUFFER) .batch(BATCH_SIZE) .map(batch_format_fn) return preprocess(fashion_mnist_train), preprocess(fashion_mnist_test) client_dataset = get_fashion_mnist_datasets()[0].create_tf_dataset_for_client(fashion_mnist_train.client_ids[i]) ``` 以上代码假设已经有定义了NUM_EPOCHS、SHUFFLE_BUFFER和BATCH_SIZE的变量,若没有定义需要自定义变量。

相关推荐

### 回答1: 以下是以fashionmnist为数据集的代码: python import tensorflowederated as tff from tensorflow.keras.datasets import fashion_mnist (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() def preprocess(x, y): x = tf.cast(x, tf.float32) y = tf.cast(y, tf.int32) x = x / 255.0 return {'pixels': x}, y BATCH_SIZE = 32 emnist_train = tff.simulation.ClientData.from_clients_and_fn( client_ids=['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], create_tf_dataset_for_client_fn=lambda client_id: tf.data.Dataset.from_tensor_slices(preprocess(x_train, y_train)).batch(BATCH_SIZE)) client_dataset = emnist_train.create_tf_dataset_for_client(emnist_train.client_ids[i]) ### 回答2: 将 client_dataset = emnist_train.create_tf_dataset_for_client(emnist_train.client_ids[i]) 改写为以 fashionmnist 为数据集的代码,可以参考以下示例: python import tensorflow as tf from tensorflow import keras import numpy as np # 加载 fashionmnist 数据集 fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() # 对数据进行归一化处理 train_images = train_images / 255.0 test_images = test_images / 255.0 # 创建客户端 ID client_ids = ['client1', 'client2', 'client3', ...] # 创建客户端数据集 client_datasets = [] for i in range(len(client_ids)): # 根据客户端 ID 获取对应的训练数据和标签 client_train_images = train_images[i*1000 : (i+1)*1000] client_train_labels = train_labels[i*1000 : (i+1)*1000] # 构建客户端数据集 client_dataset = tf.data.Dataset.from_tensor_slices((client_train_images, client_train_labels)) # 添加到客户端数据集列表 client_datasets.append(client_dataset) # 输出客户端数据集的大小 for i in range(len(client_ids)): print(f'客户端 {client_ids[i]} 的数据集大小为: {len(list(client_datasets[i]))}') 上述代码将 fashionmnist 数据集加载进来后,根据客户端的数量进行数据集划分,每个客户端的数据集都存储在 client_datasets 列表中,并且输出了每个客户端数据集的大小。请根据实际需要调整代码细节。 ### 回答3: 要将以上的代码改写为以FashionMNIST为数据集的代码,可以按照以下步骤进行: 1. 首先,导入相关的库和模块: python import tensorflow as tf import numpy as np 2. 然后,加载FashionMNIST数据集并进行预处理: python (x_train, y_train), _ = tf.keras.datasets.fashion_mnist.load_data() x_train = x_train.astype('float32') / 255 y_train = y_train.astype('int32') 3. 创建一个列表来存储客户端的数据集: python client_datasets = [] 4. 遍历每个客户端ID,创建客户端的数据集: python for client_id in range(num_clients): # num_clients是客户端的总数目 client_x = x_train[train_indices[client_id]] client_y = y_train[train_indices[client_id]] client_dataset = tf.data.Dataset.from_tensor_slices((client_x, client_y)).batch(batch_size) client_datasets.append(client_dataset) 在这里,train_indices是一个存储了将数据集划分为客户端的训练集的索引的列表,batch_size是每个客户端的批次大小。 最后,client_datasets列表中的每个元素就是一个客户端的FashionMNIST数据集了。
集呢? 您可以尝试使用以下代码将 example_dataset 进行修改以使用本地的 fashion_mnist 数据集: import tensorflow_federated as tff from tensorflow import keras fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() def preprocess(dataset): def batch_format_fn(element): return (tf.reshape(element['pixels'],[-1,784]),tf.reshape(element['label'],[-1,1])) return dataset.repeat(NUM_EPOCHS).map(batch_format_fn).shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE) def make_federated_data(client_data, client_ids): return [preprocess(client_data.create_tf_dataset_for_client(client_id)) for client_id in client_ids] emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data() fashion_mnist_train, fashion_mnist_test = fashion_mnist.load_data() fashion_mnist_train_client = tff.simulation.ClientData.from_tensor_slices( {'pixels': train_images, 'label': train_labels}) fashion_mnist_test_client = tff.simulation.ClientData.from_tensor_slices( {'pixels': test_images, 'label': test_labels}) federated_train_data_fashion_mnist = make_federated_data(fashion_mnist_train_client, fashion_mnist_train_client.client_ids) example_dataset = federated_train_data_fashion_mnist[0] 这段代码将使用 tff.simulation.datasets.emnist.load_data() 加载 EMNIST 数据集,并使用 fashion_mnist.load_data() 加载 fashion_mnist 数据集。然后,它将为 fashion_mnist 创建 ClientData 对象,然后将 ClientData 对象转换为可以在 TFF 训练环境中使用的联合数据集。最后,它将 example_dataset 赋值给第一个 "fashion_mnist" 客户端的数据集。
### 回答1: 如果将数据集从Emnist转换为Fashion-MNIST,代码需要相应修改。修改之后的代码如下: example_dataset = fashion_mnist_train.create_tf_dataset_for_client( fashion_mnist_train.client_ids[0]) ### 回答2: 当数据改变为本地的Fashion MNIST时,代码需要做如下修改: 1. 导入适用于Fashion MNIST的数据集:from tensorflow.keras.datasets import fashion_mnist 2. 加载Fashion MNIST数据集:(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() 3. 调整数据格式:Fashion MNIST数据集的形状需要改变为类似于EMNIST的形状,即将每个样本从二维矩阵转换为一维向量。代码如下: python x_train = x_train.reshape(x_train.shape[0], -1) x_test = x_test.reshape(x_test.shape[0], -1) 4. 标准化数据:为了提高训练的效果,需要将数据标准化处理。代码如下: python x_train = x_train / 255.0 x_test = x_test / 255.0 5. 创建客户端数据集:根据EMNIST数据集中的代码,我们可以创建Fashion MNIST的客户端数据集。代码如下: python import tensorflow as tf from collections import defaultdict def create_tf_dataset_for_client(client_id): dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) client_dataset = dataset.filter(lambda x, y: tf.equal(tf.argmax(y, axis=-1), client_id)) client_ids = [ tf.argmax(y, axis=-1) for y in y_train] result = defaultdict(list) for i, client_id in enumerate(client_ids): result[client_id.numpy()].append((x_train[i], y_train[i])) return result[client_id] 以上即为将代码适应为本地的Fashion MNIST数据集的修改。请注意,此处只展示了主要步骤和关键代码,实际使用时可能还需要进行一些调整和完善。 ### 回答3: 如果将数据改为本地的fashion_mnist数据集,代码需要进行以下修改: 1. 导入所需的模块: python import tensorflow as tf from tensorflow.keras.datasets import fashion_mnist 2. 加载fashion_mnist数据集: python (x_train, y_train), (_, _) = fashion_mnist.load_data() 3. 将数据集转换为tf.data.Dataset对象: python dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) 4. 定义数据的预处理函数(可根据需求进行修改): python def preprocess_fn(image, label): image = tf.cast(image, tf.float32) / 255.0 # 将像素值归一化到0-1之间 label = tf.cast(label, tf.int32) # 转换标签的数据类型 return image, label 5. 对数据集进行预处理: python dataset = dataset.map(preprocess_fn) 6. 若需要选择特定客户端的数据,可以使用下述方法(此处为例子,需根据实际需求进行调整): python client_id = 0 # 选择第一个客户端 dataset = dataset.batch(32).filter(lambda x, y: tf.equal(tf.strings.reduce_sum(x), client_id)) 7. 最后,将dataset用于训练(将emnist_train替换为上述定义的fashion_mnist数据集): python example_dataset = dataset 这样,代码就根据新的fashion_mnist数据集进行了相应的修改。

最新推荐

2023年全球聚甘油行业总体规模.docx

2023年全球聚甘油行业总体规模.docx

java web Session 详解

java web Session 详解

rt-thread-code-stm32f091-st-nucleo.rar,STM32F091RC-NUCLEO 开发板

STM32F091RC-NuCLEO 开发板是 ST 官方推出的一款基于 ARM Cortex-M0 内核的开发板,最高主频为 48Mhz,该开发板具有丰富的扩展接口,可以方便验证 STM32F091 的芯片性能。MCU:STM32F091RC,主频 48MHz,256KB FLASH ,32KB RAM,本章节是为需要在 RT-Thread 操作系统上使用更多开发板资源的开发者准备的。通过使用 ENV 工具对 BSP 进行配置,可以开启更多板载资源,实现更多高级功能。本 BSP 为开发者提供 MDK4、MDK5 和 IAR 工程,并且支持 GCC 开发环境。下面以 MDK5 开发环境为例,介绍如何将系统运行起来。

a5并发服务器设计-相关知识

a5并发服务器设计

Matlab与机器学习入门 进阶与提高课程 第05课-竞争神经网络与SOM神经网络 共12页.pdf

【大纲】 第01课-MATLAB入门基础 第02课-MATLAB进阶与提高 第03课-BP神经网络 第04课-RBF、GRNN和PNN神经网络 第05课-竞争神经网络与SOM神经网络 第06课-支持向量机(Support Vector Machine, SVM) 第07课-极限学习机(Extreme Learning Machine, ELM) 第08课-决策树与随机森林 第09课-遗传算法(Genetic Algorithm, GA) 第10课-粒子群优化(Particle Swarm Optimization, PSO)算法 第11课-蚁群算法(Ant Colony Algorithm, ACA) 第12课-模拟退火算法(Simulated Annealing, SA) 第13课-降维与特征选择

超声波雷达驱动(Elmos524.03&Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�