将client_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[i])改写为以fashion_mnist为数据集的代码
时间: 2023-06-08 16:07:01 浏览: 26
Sure, 下面是以fashion_mnist为数据集的代码:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow_federated import datasets
fashion_mnist_train, fashion_mnist_test = datasets.tffashion_mnist.load_data()
def get_fashion_mnist_datasets():
def preprocess(dataset):
def batch_format_fn(element):
return (tf.reshape(element['pixels'], [-1, 784]), element['label'])
return dataset.repeat(NUM_EPOCHS) .shuffle(SHUFFLE_BUFFER) .batch(BATCH_SIZE) .map(batch_format_fn)
return preprocess(fashion_mnist_train), preprocess(fashion_mnist_test)
client_dataset = get_fashion_mnist_datasets()[0].create_tf_dataset_for_client(fashion_mnist_train.client_ids[i])
```
以上代码假设已经有定义了NUM_EPOCHS、SHUFFLE_BUFFER和BATCH_SIZE的变量,若没有定义需要自定义变量。