#include "sort_.h" #include<algorithm> using namespace std; void print_array(int *arr, int n) { if(n==0){ printf("ERROR: Array length is ZERO\n"); return; } printf("%d", arr[0]); for (int i=1; i<n; i++) { printf(" %d", arr[i]); } printf("\n"); } void adjustHeap(int *arr, int param1, int j) { int dad=param1; int son=dad*2+1; while(son<=j){ if(son + 1 <= j &&arr[son]<arr[son+1]){ son++; } if(arr[dad]>arr[son]){ return; } else{ swap(arr[dad],arr[son]); dad=son; son=dad*2+1; } } } int* heap_sort(int *arr, int n) { int len=n; for (int i = len / 2 - 1; i >= 0; i--) adjustHeap(arr, i, len - 1); for (int i = len - 1; i > 0; i--) { swap(arr[0], arr[i]); adjustHeap(arr, 0, i - 1); } return arr; }这一段代码中for (int i = len / 2 - 1; i >= 0; i--) adjustHeap(arr, i, len - 1);的作用
时间: 2024-03-31 07:36:07 浏览: 44
这一段代码是堆排序算法的核心部分,用于构建大根堆。堆排序的过程中,首先将待排序的序列构造成一个大根堆,然后将堆顶元素与堆底元素交换,再对剩余的元素重新构造成一个大根堆,依此类推,直到整个序列有序为止。
在构建大根堆的过程中,我们从最后一个非叶子节点开始,即从len/2-1处开始,向前遍历。对于每一个节点,都将其与其子节点进行比较,如果子节点的值比该节点的值大,则交换这两个节点。把该节点作为新的子节点,继续向下比较和交换,直到该节点不再有子节点或者该节点的值已经大于其所有子节点的值为止。这样就可以保证该节点及其子树形成了一个以该节点为根节点的大根堆。重复以上过程,直到所有非叶子节点都被遍历过,整个序列就构成了一个大根堆。
相关问题
#include <iostream>#include <ctime>#include <cstdlib>using namespace std;const int MAXN = 500; // 需要排序的数组大小const int MAXV = 2000; // 随机数的最大值// 直接插入排序void insertSort(int a[], int
Sure, I can help you with that. The code you provided is written in C++ and it seems to be implementing the insertion sort algorithm. Insertion sort is a simple sorting algorithm that works by repeatedly inserting elements into a sorted portion of the array.
Here's the complete implementation of the insertion sort algorithm based on the code you provided:
```cpp
#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;
const int MAXN = 500; // Size of the array to be sorted
const int MAXV = 2000; // Maximum value for random numbers
// Function to generate random numbers
void generateRandomArray(int a[], int n) {
srand(time(0));
for (int i = 0; i < n; i++) {
a[i] = rand() % MAXV;
}
}
// Function to print the array
void printArray(int a[], int n) {
for (int i = 0; i < n; i++) {
cout << a[i] << " ";
}
cout << endl;
}
// Insertion sort implementation
void insertionSort(int a[], int n) {
for (int i = 1; i < n; i++) {
int key = a[i];
int j = i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
int main() {
int arr[MAXN];
// Generate random array
generateRandomArray(arr, MAXN);
cout << "Original array: ";
printArray(arr, MAXN);
// Sort the array using insertion sort
insertionSort(arr, MAXN);
cout << "Sorted array: ";
printArray(arr, MAXN);
return 0;
}
```
This code generates a random array of size `MAXN` with values ranging from 0 to `MAXV`. It then sorts the array using the insertion sort algorithm and prints the original and sorted arrays.
Let me know if you have any further questions or if there's anything else I can assist you with!
#include <iostream> using namespace std; template <class T> #include<bits/stdc++.h> class Array { T *p;int s; public: Array(int s1=0):s(s1){ p=new T[s+1]; } int size() { return s; } void put(int n) { if(n>s)n=s; sort(p,p+s); for(int i=0;i<n;i++) { cout<<p[s-i-1]<<" "; } } T& operator[](int i) { return p[i]; } friend istream& operator >> (istream &is,Array &a) { T b; is >> b; return is; } }; ~Array() { delete[]p; } int main() { int cases, len; cin >> cases; for(int ca = 1; ca <= cases; ca++) { cin >> len; if(ca % 3 == 0) { Array<char> chr_arr(len); for(int i = 0; i < chr_arr.size(); i++) cin >> chr_arr[i]; chr_arr.put(10); } if(ca % 3 == 1) { Array<int> int_arr(len); for(int i = 0; i < int_arr.size(); i++) cin >> int_arr[i]; int_arr.put(10); } if(ca % 3 == 2) { Array<double> dbl_arr(len); for(int i = 0; i < dbl_arr.size(); i++) cin >> dbl_arr[i]; dbl_arr.put(10); } } }
这段代码有一个问题,析构函数的定义不正确,应该放在类的内部,并加上析构函数的名称。可以将代码改为:
```
#include <iostream>
#include <algorithm>
using namespace std;
template <class T>
class Array {
T *p;
int s;
public:
Array(int s1 = 0) : s(s1) {
p = new T[s + 1];
}
int size() {
return s;
}
void put(int n) {
if (n > s) n = s;
sort(p, p + s);
for (int i = 1; i <= n; i++) {
cout << p[s - i] << " ";
}
cout << endl;
}
T& operator[](int i) {
return p[i];
}
friend istream& operator >> (istream &is, Array &a) {
for (int i = 0; i < a.s; i++) {
is >> a[i];
}
return is;
}
~Array() {
delete[] p;
}
};
int main() {
int cases, len;
cin >> cases;
for (int ca = 1; ca <= cases; ca++) {
cin >> len;
if (ca % 3 == 0) {
Array<char> chr_arr(len);
cin >> chr_arr;
chr_arr.put(10);
}
if (ca % 3 == 1) {
Array<int> int_arr(len);
cin >> int_arr;
int_arr.put(10);
}
if (ca % 3 == 2) {
Array<double> dbl_arr(len);
cin >>na(inplace=True)
```
4. 构建回归模型:使用多元线性回归模型,以股票超额收益率为因变量,市场收益率、市值因子、账面市值比因子、动量因子、投资因子和质量因子的暴露度为自变量,估计模型系数。
```python
# 构建因子矩阵
factor_data = merged_data[['Mkt-RF', 'SMB', 'HML', 'Mom', 'CMA']]
factor_data = sm.add_constant(factor_data)
# 进行回归估计
results = sm.OLS(merged_data['excess_return'], factor_data).fit()
# 打印模型系数
print(results.params)
```
需要注意的是,本示例代码只是一个简单的演示,实际应用中还需要进行更多的数据处理、因子计算和模型检验等工作。同时,还需要注意数据的质量和准确性,以确保模型的有效性和可靠性。
阅读全文