import openpyxl import numpy as np from matplotlib import pyplot as plt wb = openpyxl.load_workbook('网易云音乐.xlsx') sheet=wb['Sheet1'] price = [cell[0].value for cell in sheet['D2:D51'] ] company = [cell[0].value for cell in sheet['A2:A51']if cell[0].value is not None] plt.plot(company,price) 结果只有[<matplotlib.lines.Line2D at 0x7f9cedae4a00>] 没有图像

时间: 2023-10-06 15:06:39 浏览: 150
你需要调用 `plt.show()` 函数来显示图像,因为在 Jupyter 等环境下,Matplotlib 默认不会自动显示图像。修改代码如下: ```python import openpyxl import numpy as np from matplotlib import pyplot as plt wb = openpyxl.load_workbook('网易云音乐.xlsx') sheet = wb['Sheet1'] price = [cell[0].value for cell in sheet['D2:D51']] company = [cell[0].value for cell in sheet['A2:A51'] if cell[0].value is not None] plt.plot(company, price) plt.show() ``` 这样你应该就能看到你所绘制的图像了。
相关问题

import pandas as pd import openpyxl # import matplotlib.pyplot as plt import numpy as np from sklearn.ensemble import AdaBoostClassifier from sklearn.model_selection import train_test_split # 打开Excel文件 wb = openpyxl.load_workbook('./处理过的训练集/987027.xlsx')

这段代码是用于导入所需的Python库,并打开一个Excel文件的操作。其中,pandas库用于数据的处理和分析,openpyxl库用于读写Excel文件,numpy库用于数值计算,sklearn库用于机器学习算法的实现。对于打开Excel文件的操作,需要指定文件路径和文件名,本例中文件路径为'./处理过的训练集/987027.xlsx',表示该文件在当前目录下的'处理过的训练集'文件夹中,文件名为'987027.xlsx'。

解释这个代码import openpyxl, jieba, wordcloud import matplotlib.pyplot as plt from PIL import Image import numpy as np wb = openpyxl.load_workbook('豆瓣短评爬虫_电影、图书_哆啦A梦 伴我同行2.xlsx') ws = wb.active content = '' for row in range(2, ws.max_row+1): content += ws.cell(row, 7).value t_1 = jieba.lcut(content) t_2 = ''.join(t_1) f_1 = open('stopwords.txt', 'r', encoding='utf-8') s_list = [] for i in f_1.readlines(): s_list.append(i.strip()) for line in s_list: t_2 = t_2.replace(line, '') photo = np.array(Image.open('皮卡丘.jpg')) tu = wordcloud.WordCloud(font_path='STKAITI.TTF', colormap='cool', background_color='white', mask=photo) tu.generate(t_2) tu.to_file('tu2.jpg') plt.imshow(tu) plt.axis('off') plt.show()

这段代码是一个Python程序,它使用了openpyxl、jieba、wordcloud、matplotlib.pyplot和PIL等库。程序的功能是读取一个名为“豆瓣短评爬虫_电影、图书_哆啦A梦 伴我同行2.xlsx”的Excel文件,提取其中第7列的内容,并使用jieba库进行分词处理。接着,程序读取一个名为“stopwords.txt”的文本文件,将其中的停用词去除。最后,程序使用wordcloud库生成一个名为“tu2.jpg”的词云图,并使用matplotlib.pyplot库将其显示出来。
阅读全文

相关推荐

import numpy as np import xlrd import matplotlib.pyplot as plt from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score def excel2m(path):#读excel数据转为矩阵函数 data = xlrd.open_workbook(path) table = data.sheets()[0] # 获取excel中第一个sheet表 nrows = table.nrows # 行数 ncols = table.ncols # 列数 datamatrix = np.zeros((nrows, ncols)) for x in range(ncols): cols = table.col_values(x) cols1 = np.matrix(cols) # 把list转换为矩阵进行矩阵操作 datamatrix[:, x] = cols1 # 把数据进行存储 return datamatrix x=excel2m("factors.xlsx") x=np.matrix(x) y=excel2m("RON.xlsx") y=np.matrix(y) rfc=RandomForestClassifier(n_estimators=10,random_state=0) score=[] for i in range(1,200,10): rfe = RFE(estimator=rfc, n_features_to_select=i, step=10).fit(x, y.astype('int')) rfe.support_.sum() rfe.ranking_ x_wrapper=rfe.transform(x) once=cross_val_score(rfc,x_wrapper,y.astype('int'),cv=5).mean() score.append(once) plt.figure(figsize=[20,5]) plt.plot(range(1,200,10),score) plt.xticks(range(1,200,10)) plt.show() np.savetxt('score.csv', score, delimiter = ',') # 确定选择特征数量后,看各个特征得分排名 # 每个特征的得分排名,特征得分越低(1最好),表示特征越好 #print(rfe.ranking_) #np.savetxt('ranking.csv', rfe.ranking_, delimiter = ',') # 每次交叉迭代各个特征得分 #print(rfe.grid_scores_) #np.savetxt('grid_scores.csv', rfe.grid_scores_, delimiter = ',')

以下代码有错误修改:from bs4 import BeautifulSoup import requests import openpyxl def getHTMLText(url): try: r=requests.get(url) r.raise_for_status() r.encoding=r.apparent_encoding return r.text except: r="fail" return r def find2(soup): lsauthors=[] for tag in soup.find_all("td"): for img in tag.select("img[title]"): h=[] h=img["title"] lsauthors.append(h) def find3(soup): lsbfl=[] for tag in soup.find_all("td")[66:901]: #print(tag) bfl=[] bfl=tag.get_text() bfl=bfl.strip() lsbfl.append(bfl) return lsbfl if __name__ == "__main__": url= "https://www.kylc.com/stats/global/yearly/g_population_sex_ratio_at_birth/2020.html" text=getHTMLText(url) soup=BeautifulSoup(text,'html.parser') find2(soup) lsbfl=find3(soup) workbook=openpyxl.Workbook() worksheet = workbook.create_sheet('排名',index=0) project=['排名','国家/地区','所在洲','出生人口性别比'] rank=[] a=2 b=3 c=1 for i in range(1,201,1): rank.append(i) for i in range(len(project)): worksheet.cell(row=1, column=i + 1).value = project[i] for i in range(len(rank)): worksheet.cell(row=i + 2, column=1).value = rank[i] for i in range(200): worksheet.cell(row=i + 2, column=2).value = lsbfl[c] c=c+4 for i in range(200): worksheet.cell(row=i + 2, column=3).value = lsbfl[a] a=a+4 for i in range(200): worksheet.cell(row=i + 2, column=4).value = lsbfl[b] b=b+4 wb=workbook wb.save('D:\世界各国出生人口性别比.xlsx') import numpy as np import matplotlib.pyplot as plt import matplotlib labels = ['United States','China','Ukraine','Japan','Russia','Others'] values = np.array([11,69,9,23,20,68]) fig = plt.figure() sub = fig.add_subplot(111) sub.pie(values, labels=labels, explode=[0,0,0,0,0,0.05], autopct='(%.1f)%%', shadow = True, wedgeprops = dict( edgecolor='k', width=0.85)) sub.legend() fig.tight_layout() labels2=['0-100','100-200','>200'] people_means=[140,43,17] x=np.arange(len(labels2)) width=0.50 fig,ax=plt.subplots() rects=ax.bar(x,people_means,width,label='Number of matches') ax.set_ylabel('sum') ax.set_title('People compare') ax.set_xticks(x) ax.set_xticklabels(labels2) ax.legend() plt.show()

最新推荐

recommend-type

python读取并定位excel数据坐标系详解

import matplotlib.pyplot as plt import numpy as np ``` 这里导入了所需的库,`xlrd`用于读取Excel文件,`matplotlib.pyplot`用于数据可视化,`numpy`用于处理数组操作。 ```python data = xlrd.open_workbook(r...
recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001