采用OvA (One-versus-AIl)策略,用python实现基于感知机的鸢尾花分类,并实现可视化
时间: 2024-11-06 07:20:23 浏览: 6
OvA (One-vs-All) 策略是一种常用的分类方法,它将多类分类问题转化为一系列二元分类问题,每个类别与其他所有类别分别建立独立的模型。对于鸢尾花分类问题,我们可以使用Python中的scikit-learn库中的Perceptron算法来实现。
以下是使用OvA策略和Perceptron对鸢尾花数据集进行分类并可视化的步骤:
1. 导入所需的库:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
```
2. 加载鸢尾花数据集并预处理:
```python
iris = load_iris()
X = iris.data
y = iris.target
```
3. 将多元分类问题转换为二元分类:
```python
num_classes = len(np.unique(y))
binary_y = np.zeros((len(y), num_classes - 1)) # 一维数组,用于存储类别标签对应的one-hot向量
for i, target in enumerate(y):
binary_y[i][target - 1] = 1
```
4. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, binary_y, test_size=0.2, random_state=42)
```
5. 创建并训练Perceptron模型:
```python
models = [Perceptron(random_state=42) for _ in range(num_classes - 1)]
for model, target_class in zip(models, range(1, num_classes)):
model.fit(X_train[:, target_class:], y_train[:, target_class])
```
6. 预测和评估:
```python
predictions = []
for model, data in zip(models, X_test):
predictions.append(model.predict(data) + 1) # 增加1是为了匹配原始标签范围
final_predictions = np.argmax(predictions, axis=1)
accuracy = accuracy_score(y_test, final_predictions)
print(f"Accuracy: {accuracy * 100:.2f}%")
```
7. 可视化决策边界:
由于Perceptron是线性分类器,我们无法直接绘制出复杂的决策边界。但可以尝试对第一个维度和预测结果进行散点图展示:
```python
plt.figure(figsize=(8, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=final_predictions, cmap='viridis')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Decision Boundaries (First Two Features)')
plt.show()
```
阅读全文