java实现处理字符串,将手机号码的后四位用*号隐藏,输入输出字符串格式如下例所示。输入: 姓名:张三,电话:13504341234输出: 张三1350434****

时间: 2024-11-15 12:14:03 浏览: 20
在Java中,你可以使用String的replace()方法来实现这个需求。这里是一个简单的示例: ```java public class Main { public static void main(String[] args) { String name = "张三"; String phoneNumber = "13504341234"; // 提取手机号的前几位和后四位 int start = phoneNumber.length() - 4; String hiddenNumber = "*".repeat(start); // 使用replace方法替换手机号的后四位 String result = name + ",电话:" + phoneNumber.substring(0, start) + hiddenNumber; System.out.println(result); } } ``` 在这个例子中,我们首先获取到手机号的最后四个字符,然后使用`"*".repeat(start)`创建一个星号序列,长度等于隐藏的数字位数。接着,通过`substring(0, start)`取出手机号的前部分,并将其与隐藏的部分拼接起来。 运行上述代码会得到预期的结果: ``` 张三,电话:1350434**** ```
相关问题

用java编写处理字符串,将手机号码的后四位用*号隐藏,输入输出字符串格式如下例所示。 输入: 姓名:张三,电话:13504341234 输出: 张三1350434****

在Java中,你可以通过字符串操作和正则表达式轻松地完成这个任务。下面是一个简单的示例代码片段: ```java public class Main { public static void main(String[] args) { String input = "姓名:张三,电话:13504341234"; String output = hidePhoneNumber(input); System.out.println(output); } public static String hidePhoneNumber(String str) { // 使用正则表达式匹配电话号码部分 Pattern pattern = Pattern.compile("\\d{3}-(\\d{4})"); Matcher matcher = pattern.matcher(str); // 如果找到匹配,替换后四位为星号 if (matcher.find()) { String phoneNumber = matcher.group(1); // 获取电话号码 return str.replaceFirst(pattern.pattern(), phoneNumber.substring(0, 3) + "***" + phoneNumber.substring(7)); // 隐藏后四位 } else { return str; // 如果没找到电话号码,则直接返回原字符串 } } } ``` 在这个例子中,`hidePhoneNumber`函数查找输入字符串中形如`XXX-XXXXX`的电话号码,并将其后四位替换为星号。运行上述代码,会得到期望的结果。

java 16进制转成字符串_java 16进制转成字符串

### 回答1: Java中可以通过将16进制字符串转成字节数组,再通过字符集转成字符串来实现将16进制转成字符串的操作。以下是一个示例代码: ```java public static String hexToString(String hex) { byte[] bytes = new byte[hex.length() / 2]; for (int i = 0; i < bytes.length; i++) { bytes[i] = (byte) Integer.parseInt(hex.substring(2 * i, 2 * i + 2), 16); } return new String(bytes, StandardCharsets.UTF_8); } ``` 其中,`hex`是一个16进制字符串,`bytes`是将16进制字符串转成的字节数组,最后通过`new String(bytes, StandardCharsets.UTF_8)`将字节数组转成字符串。使用方法如下: ```java String hex = "68656c6c6f"; String str = hexToString(hex); System.out.println(str); // 输出:hello ``` ### 回答2: Java中可以通过使用Integer类的静态方法parseInt(),将16进制字符串转换为整数类型,然后再将整数类型转换为对应的字符。 具体步骤如下: 1. 创建一个16进制字符串,例如"7B"。 2. 使用Integer类的静态方法parseInt(),将十六进制字符串转换为对应的整数类型。代码示例:int num = Integer.parseInt("7B", 16),其中的16表示输入字符串是16进制的。 3. 将得到的整数类型转换为字符类型。代码示例:char ch = (char) num。 4. 打印输出字符。代码示例:System.out.println(ch)。 完整代码如下所示: ```java public class HexToChar { public static void main(String[] args) { String hexStr = "7B"; int num = Integer.parseInt(hexStr, 16); char ch = (char) num; System.out.println(ch); } } ``` 以上代码将会输出字符'{',因为16进制数7B对应的ASCII码是123,而123对应的字符是'{'。 以上是将一个16进制字符串转换为一个字符的方法,如果需要将一个16进制字符串转换为一个字符串,可以使用String类的构造方法将字符数组转换为字符串。 具体步骤如下: 1. 创建一个16进制字符串,例如"68656C6C6F"。 2. 将16进制字符串转换为字节数组。代码示例:byte[] byteArray = new BigInteger(hexStr, 16).toByteArray()。 3. 根据字节数组创建一个字符串。代码示例:String str = new String(byteArray)。 完整代码如下所示: ```java import java.math.BigInteger; public class HexToString { public static void main(String[] args) { String hexStr = "68656C6C6F"; byte[] byteArray = new BigInteger(hexStr, 16).toByteArray(); String str = new String(byteArray); System.out.println(str); } } ``` 以上代码将会输出字符串"hello",因为16进制字符串"68656C6C6F"转换为字节数组后,对应的ASCII码就是"h"、"e"、"l"、"l"、"o",而这些ASCII码对应的字符就是"hello"。 ### 回答3: 要将一个十六进制字符串转换为字符串,我们可以使用Java的内置函数和库来完成。可以按照以下步骤进行: 第一步,将十六进制字符串拆分成两个字符为一组的字符串。例如,如果输入的十六进制字符串是"616263",则将其拆分为["61", "62", "63"]。 第二步,将每个拆分后的字符串转换为十六进制表示的整数值。可以使用Integer.parseInt()函数来实现此步骤。例如,将字符串"61"转换为整数97。 第三步,将每个整数值转换为对应的字符。可以使用Java的内置Char类型来实现此步骤。例如,将整数97转换为字符'a'。 第四步,将所有字符拼接在一起,形成最终的字符串。可以使用Java的内置String类型的+=运算符来实现此步骤。 通过按照上述步骤进行操作,我们可以将十六进制字符串转换为相应的字符串。 以下是一个Java代码示例: ```java public class HexToString { public static String hexToString(String hex) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < hex.length(); i += 2) { String hexPair = hex.substring(i, i + 2); int decimalValue = Integer.parseInt(hexPair, 16); char characterValue = (char) decimalValue; sb.append(characterValue); } return sb.toString(); } public static void main(String[] args) { String hexString = "616263"; String result = hexToString(hexString); System.out.println(result); // 输出 "abc" } } ``` 在上述示例中,我们定义了一个名为hexToString的方法来完成十六进制转换为字符串的操作。然后,在main方法中,我们定义了一个示例十六进制字符串"616263"并调用hexToString方法来将其转换为字符串。最后,我们打印输出结果"abc"。
阅读全文

相关推荐

最新推荐

recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

精选毕设项目-宅男社区.zip

精选毕设项目-宅男社区
recommend-type

精选毕设项目-扫描条形码.zip

精选毕设项目-扫描条形码
recommend-type

配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解 模型中一阶段变量主要包括01

配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解。 模型中一阶段变量主要包括01变量和无功优化变量,核心变量主要存在于二阶段,因此在叠加二阶段变量优化过程中更容易得到最优解,所以有限次迭代即得到收敛的结果。 模型以网损为目标,包括功率平衡、网络潮流、电压电流、蓄电池出力以及无功设备出力等约束。 复现《两阶段鲁棒优化的主动配电网动态无功优化》-熊壮壮,具体内容可自行下载了解。
recommend-type

comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移

comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。