[Matlab科学计算] 有限元法求二阶常系数非齐次线性微分方程y′′ + Py' + Qy = f(x)源代码
时间: 2023-12-03 16:45:55 浏览: 106
二阶非线性微分方程 打靶法
4星 · 用户满意度95%
以下是用有限元法求解二阶常系数非齐次线性微分方程的Matlab源代码:
```matlab
% 输入参数
a = 0; % 区间左端点
b = 1; % 区间右端点
n = 10; % 离散节点数
P = 1; % 常数项P
Q = 1; % 常数项Q
f = @(x) cos(x); % 非齐次项f(x)
% 计算初始参数
h = (b-a)/n; % 步长
x = linspace(a,b,n+1)'; % 离散节点
A = zeros(n-1); % 系数矩阵
F = zeros(n-1,1); % 右端向量
% 组装系数矩阵和右端向量
for i = 1:n-1
A(i,i) = -2/h^2 + P/(2*h);
A(i,i+1) = 1/h^2 - P/(2*h);
A(i+1,i) = 1/h^2 + P/(2*h);
F(i) = f(x(i+1));
end
F(1) = F(1) - (1/h^2 - P/(2*h))*y(a+h); % 边界条件
F(n-1) = F(n-1) - (1/h^2 + P/(2*h))*y(b-h); % 边界条件
% 解线性方程组
Y = A\F;
% 计算数值解
y = [0; Y; 0];
x = linspace(a,b,n+1)';
for i = 2:n
y(i) = y(i) + y(i-1)/(2*h) - f(x(i))*h^2/2 - Q*y(i)*h^2/2;
end
% 绘制图像
plot(x,y)
xlabel('x')
ylabel('y')
title('有限元法求解二阶常系数非齐次线性微分方程')
```
其中,我们通过输入参数a、b、n、P、Q和f(x)来确定微分方程的相关参数,然后计算出离散节点的位置和系数矩阵、右端向量等参数,最后通过解线性方程组得到数值解y,并绘制出其图像。
阅读全文