可以在MATLAB上使用的贝叶斯加权平均算法程序代码
时间: 2024-05-15 11:14:22 浏览: 77
下面是一个简单的 MATLAB 程序代码示例,用于实现贝叶斯加权平均算法:
```matlab
function [Y_avg, Y_var] = bayesian_weighted_average(X, W)
% X: N-by-M matrix of input data, where N is the number of observations and M is the number of variables
% W: N-by-1 vector of weights for each observation
N = size(X, 1); % number of observations
M = size(X, 2); % number of variables
% Compute the mean of each variable
mu = mean(X);
% Compute the variance of each variable
sigma2 = var(X);
% Compute the mean of the weighted observations
Y_avg = sum(bsxfun(@times, X, W), 1) / sum(W);
% Compute the variance of the weighted observations
Y_var = sum(bsxfun(@times, bsxfun(@minus, X, Y_avg).^2, W), 1) / sum(W);
% Compute the posterior distribution parameters
posterior_mu = (sum(bsxfun(@times, X, W), 1) + mu./(sigma2/(N+1))) / (sum(W) + 1/(sigma2/(N+1)));
posterior_sigma2 = (sum(bsxfun(@times, bsxfun(@minus, X, Y_avg).^2, W), 1) + sigma2./(N+1)) / (sum(W) + 1/(N+1));
% Compute the posterior predictive distribution mean and variance
Y_ppd_avg = posterior_mu;
Y_ppd_var = posterior_sigma2 + Y_var;
end
```
该程序代码接受一个 N-by-M 的矩阵 X,其中 N 是观测值的数量,M 是变量的数量,以及一个 N-by-1 的权重向量 W。它计算每个变量的平均值和方差,然后使用这些值计算加权观测值的平均值和方差。最后,它计算后验分布参数和后验预测分布的平均值和方差。
请注意,这只是一个简单的示例代码,可能需要根据您的具体应用做出一些修改。
阅读全文