r语言画折线图并计算rmse
时间: 2023-09-11 15:06:33 浏览: 187
假设有以下数据:
```r
x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 5, 7, 8)
```
首先,我们可以通过以下代码画出折线图:
```r
plot(x, y, type = "l", xlab = "x", ylab = "y", main = "折线图")
```
其中,`type = "l"` 表示画线,`xlab = "x"` 和 `ylab = "y"` 分别表示 x 轴和 y 轴的标签,`main = "折线图"` 表示图的标题为 "折线图"。
接下来,我们可以计算该折线图对应的 RMSE 值:
```r
# 定义函数计算RMSE
rmse <- function(actual, predicted) {
sqrt(mean((actual - predicted) ^ 2))
}
# 计算预测值
y_pred <- predict(lm(y ~ x))
# 计算RMSE
rmse(y, y_pred)
```
其中,`lm(y ~ x)` 表示对 y 关于 x 进行线性回归,`predict(lm(y ~ x))` 表示用线性回归模型预测 y 的值。最后输出的数值即为 RMSE 的值。
阅读全文
相关推荐


















