一维efficientnetV2代码
时间: 2023-07-03 07:29:39 浏览: 90
EffcientNetV2:使用PyTorch的EfficientNetV2实现
一维 EfficientNetV2 的代码可以参考以下示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
def round_filters(filters, multiplier):
"""计算通道数的倍数"""
divisor = 8
new_filters = int(filters * multiplier + divisor / 2) // divisor * divisor
new_filters = max(divisor, new_filters)
if new_filters < 0.9 * filters:
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, multiplier):
"""计算重复数的倍数"""
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def SEBlock(input_filters, se_ratio):
"""Squeeze-and-Excitation 模块"""
num_reduced_filters = max(1, int(input_filters * se_ratio))
filters = input_filters
se = layers.GlobalAveragePooling1D()(input)
se = layers.Reshape((1, filters))(se)
se = layers.Conv1D(num_reduced_filters, 1, activation='relu', padding='same')(se)
se = layers.Conv1D(filters, 1, activation='sigmoid', padding='same')(se)
return layers.multiply([input, se])
def MBConvBlock(input_filters, output_filters, kernel_size, strides, expand_ratio, se_ratio, id_skip, drop_rate):
"""MBConvBlock 模块"""
has_se = (se_ratio is not None) and (0 < se_ratio <= 1)
filters = input_filters * expand_ratio
# 扩张卷积
x = layers.Conv1D(filters, 1, padding='same', use_bias=False)(input)
x = layers.BatchNormalization()(x)
x = layers.Activation(tf.nn.swish)(x)
# 深度卷积
x = layers.DepthwiseConv1D(kernel_size, strides=strides, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation(tf.nn.swish)(x)
# Squeeze-and-Excitation
if has_se:
x = SEBlock(input_filters, se_ratio)(x)
# 线性卷积
x = layers.Conv1D(output_filters, 1, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
# 残差连接
if id_skip and strides == 1 and input_filters == output_filters:
if drop_rate and drop_rate > 0:
x = layers.Dropout(drop_rate)(x)
x = layers.add([x, input])
return x
def EfficientNetV2(input_shape, num_classes, width_multiplier=1.0, depth_multiplier=1.0, dropout_rate=0.2):
"""EfficientNetV2 模型"""
inputs = layers.Input(shape=input_shape)
# 第一个卷积层
x = layers.Conv1D(round_filters(32, width_multiplier), 3, strides=2, padding='same', use_bias=False)(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation(tf.nn.swish)(x)
# MBConvBlock 模块序列
b = 0
blocks = [
# t, c, n, s, se
[1, 16, round_repeats(1, depth_multiplier), 1, None],
[4, 24, round_repeats(2, depth_multiplier), 2, None],
[4, 32, round_repeats(3, depth_multiplier), 2, None],
[4, 64, round_repeats(4, depth_multiplier), 2, None],
[4, 96, round_repeats(3, depth_multiplier), 1, 0.25],
[4, 160, round_repeats(3, depth_multiplier), 2, 0.25],
[4, 320, round_repeats(1, depth_multiplier), 1, 0.25],
]
for (t, c, n, s, se) in blocks:
for i in range(n):
b += 1
strides = s if i == 0 else 1
x = MBConvBlock(x, round_filters(c, width_multiplier), kernel_size=3, strides=strides, expand_ratio=t, se_ratio=se, id_skip=True, drop_rate=dropout_rate)
# 最后的卷积层
x = layers.Conv1D(round_filters(1280, width_multiplier), 1, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation(tf.nn.swish)(x)
# 全局平均池化和全连接层
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dropout(dropout_rate)(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
return tf.keras.Model(inputs, outputs, name='EfficientNetV2')
```
这是一段简单的 EfficientNetV2 代码,其中包含了常用的一些模块,如 Squeeze-and-Excitation 模块和 MBConvBlock 模块。你可以根据自己的需要进行修改和扩展。
阅读全文