基于Python的直播平台数据分析可视化系统

时间: 2023-05-17 22:07:43 浏览: 35
C知道:非常感谢您的提问。基于Python的直播平台数据分析可视化系统可以使用Python的数据分析库(如Pandas、NumPy等)和可视化库(如Matplotlib、Seaborn等)来实现。您可以使用Python爬虫获取直播平台的数据,然后使用数据分析库对数据进行处理和分析,最后使用可视化库将分析结果可视化展示出来。如果您需要更详细的信息,可以参考相关的Python数据分析和可视化教程。
相关问题

基于python的数据分析和可视化系统

### 回答1: 基于Python的数据分析和可视化系统是一种利用Python编程语言进行数据分析和可视化的系统。它可以帮助用户更好地理解和分析数据,从而做出更好的决策。该系统通常包括数据收集、数据清洗、数据分析和数据可视化等功能,可以应用于各种领域,如商业、科学、医疗等。Python作为一种流行的编程语言,具有易学易用、灵活性强、开源免费等优点,因此在数据分析和可视化领域得到了广泛应用。 ### 回答2: Python作为一种开源的编程语言,同时也是数据分析和可视化的重要工具之一。基于Python的数据分析和可视化系统是一种集数据采集、清洗、分析和可视化于一体的工具,使得数据分析人员能够更快捷、高效地处理海量数据。 Python的数据分析和可视化系统通常包含以下几个方面: 1. 数据采集与清洗:Python可以通过各种第三方库,如BeautifulSoup、Selenium、Scrapy等,实现从网页、数据库、API等渠道获取数据,并通过Pandas等数据处理工具实现数据清洗和预处理。 2. 数据分析与处理:Python中有许多强大的数据分析、统计学和机器学习库,例如NumPy、SciPy、StatsModels、scikit-learn等,这些库可以满足数据分析的需求。 3. 数据可视化:Python中有多个可视化工具包,例如Matplotlib、Seaborn、Bokeh、Plotly等,这些工具可以帮助数据分析人员通过图表、图像等形式呈现数据信息,更加直观地展现分析结果。 基于Python的数据分析和可视化系统的优势在于其开源、简单易学、丰富的第三方库和强大的可视化工具。同时,Python还具有跨平台特性,可以在不同的操作系统上运行。 总之,基于Python的数据分析和可视化系统是一种强大、高效的数据处理工具,能够帮助数据分析人员实现数据的采集、处理和可视化,帮助企业和机构更好地理解和利用数据,提高数据决策的质量和效率。 ### 回答3: 随着大数据时代的到来和数据量的爆炸式增长,数据分析和可视化已成为企业发展的重要一环。Python因其易学易用、开源且拥有丰富的数据科学库而成为数据科学家和业界工程师的首选。基于Python的数据分析和可视化系统可以提供一种高效而迅捷的解决方案,能够对海量数据进行整合、分析和可视化展示,同时也可以提高分析师和决策者在处理数据的效率。 基于Python的数据分析和可视化系统通常涵盖以下几个层次: 1. 数据收集和整合 企业通常会面临来自多个来源的数据,例如交易记录、用户反馈、生产日志等。基于Python的数据分析和可视化系统可以帮助企业将这些来自不同来源的数据进行整合,使其能够在统一的平台下进行分析。 2. 数据预处理和清洗 在大数据时代,无论是结构化数据还是非结构化数据都存在噪音、丢失值和异常值。基于Python的数据分析和可视化系统可以通过数据预处理和清洗的方法,处理这些问题,使得分析和可视化的结果更加准确和完整。 3. 数据分析和建模 基于Python的数据科学库,例如pandas、numpy等可以提供基础的数据处理、计算和统计分析的功能。而在这些功能的基础上,scikit-learn和TensorFlow等高级数据科学库也可以帮助企业实现复杂的机器学习和深度学习模型,从而更好地分析数据并从中获得有价值的信息。 4. 可视化呈现 基于Python的可视化库,例如matplotlib、seaborn和plotly等,可以提供各种绘图界面,帮助用户将经过分析后的数据以更好的方式进行可视化呈现,帮助企业管理层更快速地了解业务状况和决策支持。 综上所述,基于Python的数据分析和可视化系统可以帮助企业在海量数据中找到有价值的信息,了解业务现状,发现潜在问题,并提出科学合理的解决方案。它不仅可以提高企业数据分析的效率、准确性和可靠性,也可以为企业在竞争的市场中寻找到新的商业机会。

基于python的数据分析可视化系统

### 回答1: 基于Python的数据分析可视化系统是一种利用Python编程语言开发的数据分析和可视化工具,它可以帮助用户快速地处理和分析大量的数据,并将分析结果以图表、图形等形式直观地展示出来,从而帮助用户更好地理解数据和发现数据中的规律和趋势。这种系统通常包括数据预处理、数据分析、数据可视化等模块,用户可以根据自己的需求选择相应的模块进行使用。Python作为一种简单易学、功能强大的编程语言,已经成为了数据科学领域的主流工具之一,因此基于Python的数据分析可视化系统也越来越受到人们的关注和使用。 ### 回答2: Python是目前最受欢迎的编程语言之一,也是数据分析领域中最广泛使用的工具之一。基于Python的数据分析可视化系统具有许多优点。 首先,Python具有丰富的数据分析包和库,如NumPy、Pandas、SciPy等。这些工具可以帮助处理大型数据集和矩阵运算,而且还有数据预处理、数据可视化等功能。使用这些库,可以更快地进行数据处理和分析,这在快速分析大规模数据集时非常有用。 其次,Python的可视化工具非常丰富和成熟,如Matplotlib、Seaborn、Plotly、Bokeh等。这些工具提供了各种可视化类型、样式和图表类型,可用于分析和可视化数据集。这些工具还可以与Python的其他库和框架无缝集成,如Jupyter Notebook、Django和Flask等。 最后,Python还可以与各种数据库和数据源进行连接,并利用Python的扩展包进行数据提取和处理。这使得基于Python的数据分析可视化系统可以同步处理各种数据源中的数据,并为其提供适当的数据视图、可视化和分析。 总的来说,基于Python的数据分析可视化系统不仅可以帮助更快地处理、分析和可视化大规模数据集,还提供了各种工具和包,用于处理、分类和预处理数据,以便在数据可视化和分析过程中更好地理解数据的含义和性质。它们是数据科学、AI和机器学习研究人员的首选工具之一。 ### 回答3: Python是一种强大的编程语言,非常适合数据科学家和分析师使用,因为它有许多强大的库和工具,能够帮助我们操作和分析数据。Python的数据分析库包括Pandas、NumPy、Matplotlib、Seaborn和Bokeh等。 基于Python的数据分析可视化系统可以帮助我们更好地理解和分析数据,从而得出关于数据背后的有用信息和见解。这个系统可以帮助我们通过数据可视化工具实现某些任务,比如: 1.探索性数据分析:通过可视化工具来探索数据的分布、结构、变化和异常情况,从而发现数据中的潜在模式和规律。 2.数据清理和转换:通过可视化工具检查和处理数据中的缺失值、重复值、异常值或错误数据,从而提高数据的质量和准确性。 3.数据挖掘和分析:通过可视化工具探索数据背后的规律和趋势,比如聚类、分类、预测、时间序列分析等,从而帮助我们更好地理解数据并做出更好的决策。 4.数据报告和展示:通过可视化工具创建报告、图形和动态可视化效果,从而将数据传达给不同的受众群体,分享关于数据的见解和洞察,提供更好的沟通和合作。 基于Python的数据分析可视化系统可以帮助我们更好地了解数据,做出更好的决策和创新,而这是现代企业竞争的关键因素之一。

相关推荐

### 回答1: 基于Python爬取电商数据可视化分析系统是一个用于从电商网站中爬取数据,并通过可视化分析来帮助用户更好地理解和分析电商市场的工具。 首先,我们可以使用Python的库,如BeautifulSoup、Selenium等,来进行网页爬取。通过抓取电商网站上的商品信息、用户评价和销售数据,可以获得关于产品和市场的大量数据。 然后,通过数据清洗和处理,对所获取的原始数据进行整理和筛选,将其转换为结构化的数据。这可以通过使用Pandas和NumPy等Python的数据处理库来实现。清洗和处理数据的目的是为了提高数据的质量,减少噪声和错误,使得分析后的结果更具有可靠性和准确性。 接下来,我们可以使用Python的数据可视化库,如Matplotlib和Seaborn,对清洗后的数据进行可视化分析。通过绘制柱状图、折线图、散点图、热力图等各种图表,可以直观地展示商品的销售量、价位分布、用户评价等信息,为用户提供全面的市场洞察。这些可视化图表可以帮助用户发现销售趋势、热门产品、市场竞争等关键信息,以支持他们做出更明智的决策。 此外,系统还可以提供交互式的可视化界面,供用户根据自己的需求进行数据的筛选和查询。用户可以选择特定的电商平台、产品类别、时间范围等条件,来针对性地观察和分析市场数据。同时,系统还可以提供基于用户行为的推荐功能,帮助用户发现可能感兴趣的产品和市场机会。 总之,基于Python爬取电商数据可视化分析系统可以为用户提供全面的电商市场数据分析服务,帮助他们更好地理解市场状况,发现潜在商机,做出科学的决策。通过Python强大的数据处理和可视化能力,这个系统可以有效地帮助用户节省时间和精力,提高决策的准确性和效率。 ### 回答2: 基于Python爬取电商数据可视化分析系统,是指利用Python编程语言实现爬取电商数据,并通过数据可视化技术展示和分析这些数据的系统。 首先,利用Python的爬虫技术,我们可以编写程序来自动抓取电商网站上的数据,包括商品信息、销售数据、用户评价等。通过调用Python的网络请求库,我们可以模拟浏览器的操作,访问网页、获取页面源码,并使用正则表达式或解析库来提取所需数据。 接下来,将获取到的数据进行清洗和处理,去除无用信息、格式化数据,并存储到数据库中以便后续使用。Python的数据处理库,如Pandas和Numpy,可以帮助我们对大量数据进行快速高效的处理和整理。 然后,利用Python的数据可视化库,如Matplotlib和Seaborn,我们可以对电商数据进行图表展示和分析。可以绘制柱状图、折线图、饼图等,展示商品销售额、用户评价分布等数据特征。此外,还可以使用地理信息可视化库,如Folium,根据用户的地理位置展示销售热度地图。 最后,为了使系统更加用户友好,可以使用Python的Web框架,如Flask和Django,搭建一个网页应用。用户可以通过界面输入要爬取的电商网站地址或选择已配置好的网站,系统将自动爬取数据并展示在网页上。用户可以通过交互式的界面来选择不同的数据展示方式和分析方法,实现个性化的数据可视化与分析需求。 综上所述,基于Python爬取电商数据可视化分析系统,通过爬取数据、数据处理、数据可视化和Web应用搭建,能够帮助我们更好地理解和分析电商数据,为电商运营和决策提供支持。
Python是一种广泛应用于网络爬虫的高级编程语言,可以用于开发众多类型的爬虫,包括招聘数据爬虫。招聘数据爬虫可视化系统能够以图表等可视化方式展示招聘数据,并依据数据的特征进行数据分析和挖掘,有助于招聘决策者进行数据驱动的招聘决策。 本系统的设计与实现可分为以下几个步骤: 第一步是爬取招聘数据,可以使用Python的requests和BeautifulSoup库来实现网站爬取和数据解析。在爬取时需要注意反爬虫机制,并对爬取到的数据进行去重和清洗处理。 第二步是数据存储,需要选择合适的数据库作为数据存储介质。常用的有MySQL、MongoDB、Redis等,在其基础上使用Python的ORM框架,如SQLAlchemy等,来实现数据的CRUD操作。 第三步是数据分析与挖掘,需要基于数据量较大的情况下,使用数据可视化工具,如Matplotlib、Seaborn、Pyecharts等,来绘制各种图表,如饼图、折线图、柱状图等。同时,还需要进行数据挖掘,如使用分类器、聚类算法等进行数据分析,以了解数据背后的规律和特征。 第四步是前端展示,需要使用Python的web框架,如Django、Flask等,来实现前端与后台的交互。在前端展示时,可以使用前端UI框架,如Bootstrap、Ant Design等,来美化前端页面,同时为用户提供便捷的操作和查看招聘数据的功能。 总之,基于Python的招聘数据爬虫可视化系统的设计与实现是一项较为复杂的工作,需要多方面的技术支持,对于招聘决策者来说,这可以有效提高决策效率,减少招聘成本。
### 回答1: 基于Python爬虫的电影数据可视化分析是一种利用Python编程语言和爬虫技术获取电影数据,并通过数据可视化工具进行分析和展示的方法。通过爬取电影网站的数据,可以获取电影的基本信息、评分、票房等数据,然后利用Python中的数据可视化工具,如Matplotlib、Seaborn等,对数据进行可视化分析,以便更好地了解电影市场的趋势和消费者的喜好。这种方法可以帮助电影制片人和营销人员更好地了解市场需求,制定更有效的营销策略。 ### 回答2: 随着网络时代的到来,人们获取信息的方式发生了翻天覆地的变化,网络上出现了许许多多的大型数据集。如果我们能够从这些数据集中抽取关键信息,并将其可视化,就能够更加直观地理解数据背后蕴含的知识。 爬虫技术是获取大数据的有效手段之一。根据自己的需求,可以编写Python代码来爬取电影数据,并将其储存在数据库中。我们可以从IMDb、豆瓣电影、猫眼等网站获取电影数据,并将其按照特征属性划分。 电影数据的特征属性可以包括:电影名称、类型、制片国家、时长、上映日期、票房、评分等。根据这些特征属性,我们可以进行数据分析,绘制各种统计图表。比如,利用matplotlib等Python库,可以绘制柱状图、线性图、散点图等,展现电影票房随时间的变化、各类型电影的市场份额、不同国家/地区的电影制作数量等。 除了绘制统计图表,我们还可以应用机器学习算法,对电影数据集进行分类和聚类分析。比如,可以利用K-means算法将电影按照电影类型、票房等关键指标进行聚类,进而分析各类电影之间的关系。 电影数据的可视化分析,不仅可以帮助电影从业者发现市场趋势、升级电影品质,更能让观众了解市场现状、挑选合适的电影进行观看。在大数据时代,电影行业应用爬虫技术进行数据分析,是可行的、应用范围广泛的一种办法。 ### 回答3: 随着互联网技术的不断进步,电影市场也逐渐由线下转向了线上。在互联网上,我们可以了解到更多的电影信息,从而更好地了解和参与电影市场。而爬虫技术则成为了获取电影信息的重要手段之一,特别是Python语言的优势,成为越来越多的开发者所选择的爬虫工具。在获取到海量的电影信息之后,如何实现数据的可视化分析,更好地了解和把握电影市场的变化,便成了此类数据的下一步工作。 Python的数据可视化工具主要有两个:Matplotlib和Seaborn。Matplotlib是Python社区中最常见的绘图库之一,提供了一系列的图形展示功能,包括线图、柱状图、散点图等。Seaborn是基于Matplotlib的更高级封装,提供了更加简洁、快速的数据可视化方式,可实现热力图等高级数据可视化。 通过对电影数据进行分析,我们可以得出很多有价值的信息,例如: 1、电影类型的流行趋势 通过对不同类型电影的票房数据进行分析,可以得出不同类型电影的受欢迎程度,从而对电影产业的发展趋势有更加清晰的了解。例如,我们可以以柱状图的方式将不同类型电影的票房数据进行比较,从而得出各个类型电影的流行趋势。 2、电影导演的影响力分析 通过对各个导演的电影作品的票房数据进行分析,可以得出各个导演的影响力大小及其代表作品,对电影产业有更加了解。例如,我们可以使用热力图绘制出各个导演的代表作品及其评分、票房等信息,更直观地了解导演对电影市场的影响力。 3、电影评分与票房的关系分析 通过对电影的评分与票房数据进行对比分析,可以得出评分与票房之间的关系。例如,我们可以使用散点图绘制出电影的评分与票房数据的关系,从而分析评分高但票房不佳的电影以及票房高但评分不佳的电影。 总之,爬虫技术的应用让我们能够够以更为直观地方式了解电影市场的发展情况,而数据可视化分析技术则可以将获取到的海量数据变得更加清晰、易懂,从而能够更好地指导电影产业的发展。
### 回答1: 利用Python可以对NBA球员数据进行可视化分析。可以使用一些数据分析工具如Pandas和Numpy来处理数据,再用Matplotlib和Seaborn等绘图工具进行可视化分析。可以绘制各种类型的图表,如折线图、柱状图、热力图等,以及应用机器学习算法对球员表现进行预测和分类。 ### 回答2: Python是目前最流行的数据分析语言之一,在数据可视化方面也有很多优秀的工具和库可供使用,其中包括matplotlib、seaborn、plotly等。 针对nba球员数据的可视化分析,可以通过以下步骤来进行: 1. 数据获取和处理 需要从数据源获取有关nba球员的数据,并根据需要进行清洗和处理。数据可以从nba官方网站、basketball-reference.com等地方获取。 2. 数据分析 根据数据类型和问题的不同,可以使用不同的数据分析方法。如使用Pandas库进行数据透视、数据统计等操作,使用Scipy库进行t分布检验、线性回归等统计分析。 3. 数据可视化 利用Python的可视化工具和库绘制图表,按问题需要展示相关数据。matplotlib是Python中最常用的可视化工具之一,可以绘制折线图、散点图、饼图、条形图等,还可以添加多种样式和标签。seaborn是一个基于matplotlib库的可视化工具库,增加了更多的图表类型和样式。plotly是可以在网络上交互式地显示图表的可视化工具,可以方便地在网页上交互地探索图表。 通过nba球员数据可视化分析,可以实现不同方面的解读和探索。例如,可以分析各球队的平均得分、篮板、助攻等数据,找出领头球员和弱项;可以对球员的效率和稳定性进行评估,分析各项得分和统计数据之间的关系;可视化球员赛季数据、季后赛数据等,找出得分高、抢断多、篮板多、助攻多等球员的情况。 总之,基于Python的nba球员数据可视化分析可以帮助我们更好地理解和掌握相关数据,从中发现问题和规律,在数据驱动的决策中起到重要的作用。 ### 回答3: 近年来,数据可视化成为越来越受欢迎的数据分析手段之一。在NBA篮球运动领域,球员数据的可视化分析不仅可以了解球员的表现,同时也有助于NBA球队做出更好的策略决策。而Python作为一种广泛使用的编程语言,其强大的数据分析和可视化库也为我们提供了极大的便利。 首先,NBA球员数据由几百个关键指标所组成。例如:得分、篮板、助攻、抢断、盖帽、三分球命中率等等。这些数据需要通过数据可视化的方式,更加直观地呈现在我们面前,以便于我们进行分析和比较。 基于Python的数据分析和可视化库,如NumPy、Pandas和matplotlib、Seaborn等,可以帮助我们将数据呈现在直观的图表中。例如,我们可以通过条形图来比较不同球员在场上得分的情况;使用折线图来显示不同球员在不同赛季的得分变化趋势;使用散点图来描绘比赛中不同球员的得分和篮板之间的关系等等。 另外,NBA球员数据的可视化分析还可以通过地图展示各个球员的表现情况。例如,我们可以将数据可视化到全球地图上,以更直观地展示不同地区的球员表现情况和篮球文化发展状况。 总之,基于Python的NBA球员数据可视化分析可以帮助我们更好地了解NBA球员的表现,更好地为NBA球队制定战略提供帮助。同时,Python中各种数据分析和可视化库的功能和灵活性也让我们在数据分析领域更加高效和便捷。

最新推荐

Python爬取股票信息,并可视化数据的示例

今天带大家爬取雪球平台的股票数据, 并且实现数据可视化 先看下效果图 基本环境配置 python 3.6 pycharm requests csv time 目标地址 https://xueqiu.com/hq 爬虫代码 请求网页 import requests url = '...

Python爬取数据并实现可视化代码解析

主要介绍了Python爬取数据并实现可视化代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

数据可视化之利用Python制作词云图

制作词云图一.词云图介绍二.wordcloud方法二....词云图的应用相当广泛,诸如电影-视频-微博-网易云-淘宝-知乎等评论分析、书籍-报告-商品信息-疫情舆论等文本分析,使用词云图能使数据信息的表达一目了然。

Python——K-means聚类分析及其结果可视化

K-Means是聚类算法的一种,通过距离来判断数据点间的相似度并据此对数据进行聚类。 1 聚类算法 科学计算中的聚类方法 方法名称 参数 可伸缩性 用例 几何形状(使用的指标) K-Means number of ...

python matplotlib绘制动态曲线 数据流可视化

很多时候需要在程序运行过程中,查看一些数据的动态变化,最容易想到的是像opencv那样直接循环使用imshow()形成动态画面,但是由于matplotlib中的显示模式是阻塞模式,在plt.show()之后程序就会暂停在那,打开一个...

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

centos7安装nedit

### 回答1: 你可以按照以下步骤在 CentOS 7 上安装 nedit: 1. 打开终端并切换到 root 用户。 2. 运行以下命令安装 EPEL 存储库: ``` yum install epel-release ``` 3. 运行以下命令安装 nedit: ``` yum install nedit ``` 4. 安装完成后,你可以在终端中运行以下命令启动 nedit: ``` nedit ``` 如果你想打开一个文件,可以使用以下命令: ``` nedit /path/to/file

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�